• Title/Summary/Keyword: power performance testing

Search Result 467, Processing Time 0.035 seconds

Study on Performance Demonstration Test Result of Ultrasonic Examination in Nuclear Power Plant (원자력발전소 초음파검사자 기량검증시험 결과 검토)

  • Jung, Nam-Du;Moon, Yong-Sig;Lee, Seung-Pyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.384-389
    • /
    • 2014
  • In this paper, the result of an ultrasonic performance demonstration are analyzed. The requirements for an ultrasonic performance demonstration (PD) for a nuclear power plant were first described in ASME B&P Code Section XI, Appendix VIII (1989 winter addenda). In order to establish the performance demonstration scheme in Korean nuclear power plants, the Korea Hydro & Nuclear Power Co. Ltd (KHNP) has developed the Korean Performance Demonstration (KPD) system for the for the ultrasonic examination of nuclear power plants. An analysis of the ultrasonic performance demonstration results from 2004 through 2013 will improve the detection of flaws in an ultrasonic examination, as well as the further development of the KPD training system.

Round Robin Test for Performance Demonstration System of Ultrasonic Examination Personnel (초음파검사자 기량검증 체제를 위한 다자비교시험)

  • Yoon, Byung-Sik;Yang, Seung-Han;Kim, Yong-Ho;Kim, Yong-Sik;Yang, Dong-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.378-383
    • /
    • 2004
  • The Korean Performance Demonstration(KPD) System for the ultrasonic testing personnel, equipments and procedures applicable to the Class 1 and 2 piping examination for nuclear power plant in Korea has been established. A round robin test was conducted in order to compare the examination results by the method of Performance Demonstration(PD) with the traditional dB-drop method. The round robin test shows that the reliability of the PD method is better than that of the dB-drop method. As a result, adoption of the PD method to the in-service inspection of the nuclear power plants will improve the reliability of the ultrasonic test results.

Development of Ultrasonic Testing System for Piping Welds (배관 용접부 초음파검사 시스템 개발)

  • Choi, Sung-Nam;Kim, Hyung-Nam;Yoo, Hyun-Ju;Cho, Hyun-Jun;Hwang, Won-Gul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2008
  • Ultrasonic testing for welds is widely used to ensure the integrity of facilities in NPPs. Automated ultrasonic testing(AUT) is more consistent than the manual ultrasonic testing(MUT). It can scan welded parts, examines the scanned images, and saves the results as data files. AUT in NPPs is making use of commercial systems, and there has been some difficulties in calibration of the system. An AUT system is developed. It comprises of pulser/receiver, scanner and a control program(SonicWizard). The performance demonstration for piping welds in NPPs and the piping wall thickness measurement on site were conducted to verify this system. The test results of the ultrasonic testing system developed is satisfactory and effective.

Study of Testing Methods for Combustible Properties of Finishing Materials Applied into Nuclear Power Plants (원전구조물 적용 마감재의 국내 연소시험방법 조사연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.60-61
    • /
    • 2018
  • Finishing materials are very important to restrain fire spread from a compartment to another in a fire situation. Therefore, the evaluation of combustible properties for the combustible material is essential to apply finishing materials into a generic buillding or s special occupancy structure. In this study, the testing methods for evaluation of combustible performance of finishing materials of domestic were surveyed in order to prepare the guideline of application of finishing materials in nulear power plant.

  • PDF

A Development of Parallel Processing for Power Flow analysis (전력 조류 계산의 병렬처리에 관한 연구)

  • Lee, Chun-Mo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.55-59
    • /
    • 2002
  • Parallel processing is able to be used effectively on computationally intense power system problems. But this technology is not still available is not only parallel computer but also parallel processing scheme. Testing these algorithms to ensure accuracy, and evaluation of their performance is also an issue. Although a significant amount of parallel algorithms of power system problem have been developed in last decade, actual testing on parallel computer architectures lies in the beginning stages because no clear cut paths. This paper presents Jacobian modeling method to supply the base being able to treat power flow by newton's method by the computer. This method is to assign and to compute teared blocks of sparse matrix at each parallel processors. The testing to insure accuracy of developed method have been done on serial computer by trying to simulate a parallel environment.

A Development of Distributed Parallel Processing algorithm for Power Flow analysis (전력 조류 계산의 분산 병렬처리기법에 관한 연구)

  • Lee, Chun-Mo;Lee, Hae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.134-140
    • /
    • 2001
  • Parallel processing has the potential to be cost effectively used on computationally intense power system problems. But this technology is not still available is not only parallel computer but also parallel processing scheme. Testing these algorithms to ensure accuracy, and evaluation of their performance is also an issue. Although a significant amount of parallel algorithms of power system problem have been developed in last decade, actual testing on processor architectures lies in the beginning stages. This paper presents the parallel processing algorithm to supply the base being able to treat power flow by newton's method by the distributed memory type parallel computer. This method is to assign and to compute teared blocks of sparse matrix at each parallel processors. The testing to insure accuracy of developed method have been done on serial computer by trying to simulate a parallel environment.

  • PDF

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

Implementation Status of Performance Demonstration Program for Steam Generator Tubing Analysts in Korea

  • Cho, Chan-Hee;Lee, Hee-Jong;Yoo, Hyun-Ju;Nam, Min-Woo;Hong, Sung-Yull
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • Some essential components in nuclear power plants are periodically inspected using non-destructive examinations, for example ultrasonic, eddy current and radiographic examinations, in order to determine their integrity. These components include nuclear power plant items such as vessels, containments, piping systems, pumps, valves, tubes and core support structure. Steam generator tubes have an important safety role because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. There is potential that if a tube bursts while a plant is operating, radioactivity from the primary coolant system could escape directly to the atmosphere. Therefore, in-service inspections are critical in maintaining steam generator tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due to its high inspection speed and flaw detectability on non-magnetic tubes. However, it is not easy to analyze correctly eddy current signals because they are influenced by many factors. Therefore, the performance of eddy current data analysts for steam generator tubing should be demonstrated comprehensively. In Korea, the performance of steam generator tubing analysts has been demonstrated using the Qualified Data Analyst program. This paper describes the performance demonstration program for steam generator tubing analysts and its implementation results in Korea. The pass rate of domestic analysts for this program was 71.4%.

Monitoring and Analysis of 3kW Grid-Connected PV System for Performance Evaluation

  • So Jung-Hun;Jung Young-Seok;Yu Gwon-Jong;Choi Ju-Yeop;Choi Jae-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.57-62
    • /
    • 2005
  • Grid-connected photovoltaic (PV) systems were installed and monitored at the field demonstration test center (FDTC) in Korea in October 2002. Before long-term field testing of installed PV systems, the performances of PV components were evaluated and compared through short-term performance tests of each of the PV system components such as power conditioning system and PV module under standard test conditions. A data acquisition system has been constructed for measuring and analyzing the performance of PV systems to observe the overall effect of environmental conditions on their operation characteristics. Performances of PV systems have been evaluated and analyzed not only for component perspective (PV array, power conditioning unit) but also for global perspective (system efficiency, capacity factor, electrical power energy) by review of the field test and loss factors of the systems. These results indicate that it is highly imperative to develop an optimum design technology of grid connected PV systems. The objective of this paper is not only to evaluate and analyze the performance of domestic PV systems application through long-term field testing at FDTC but also to develop evaluation, analysis and optimum technology for long-term stability and reliability of grid-connected PV systems in Korea.

Three-phase Making Test Method for Common Type Circuit Breaker

  • Ryu, Jung-Hyeon;Choi, Ike-Sun;Kim, Kern-Joong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.778-783
    • /
    • 2012
  • The synthetic short-circuit making test to adequately stress the circuit breaker has been specified as the mandatory test duty in the IEC 62271-100. The purpose of this test is to give the maximum pre-arcing energy during making operation. And this requires the making operation with symmetrical short-circuit current that is established when the breakdown between contact gap occurs near the crest of the applied voltage. Also, if the interrupting chamber of circuit breakers is designed as the type of common enclosure or the operation is made by the gang operated mechanism that three-phase contacts are operated by one common mechanism, three-phase synthetic making test is basically required. Therefore, several testing laboratories have developed and proposed their own test circuits to properly evaluate the breaker performance. With these technical backgrounds, we have developed the new alternative three-phase making circuit.