• Title/Summary/Keyword: power optimization

Search Result 2,673, Processing Time 0.026 seconds

Study on the Structure Optimization and the Operation Scheme Design of a Double-Tube Once-Through Steam Generator

  • Wei, Xinyu;Wu, Shifa;Wang, Pengfei;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1022-1035
    • /
    • 2016
  • A double-tube once-through steam generator (DOTSG) consisting of an outer straight tube and an inner helical tube is studied in this work. First, the structure of the DOTSG is optimized by considering two different objective functions. The tube length and the total pressure drop are considered as the first and second objective functions, respectively. Because the DOTSG is divided into the subcooled, boiling, and superheated sections according to the different secondary fluid states, the pitches in the three sections are defined as the optimization variables. A multi-objective optimization model is established and solved by particle swarm optimization. The optimization pitch is small in the subcooled region and superheated region, and large in the boiling region. Considering the availability of the optimum structure at power levels below 100% full power, we propose a new operating scheme that can fix the boundaries between the three heat-transfer sections. The operation scheme is proposed on the basis of data for full power, and the operation parameters are calculated at low power level. The primary inlet and outlet temperatures, as well as flow rate and secondary outlet temperature are changed according to the operation procedure.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Design Optimization of Linear Synchronous Motors for Overall Improvement of Thrust, Efficiency, Power Factor and Material Consumption

  • Vaez-Zadeh, Sadegh;Hosseini, Monir Sadat
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.105-111
    • /
    • 2011
  • By having accurate knowledge of the magnetic field distribution and the thrust calculation in linear synchronous motors, assessing the performance and optimization of the motor design are possible. In this paper, after carrying out a performance analysis of a single-sided wound secondary linear synchronous motor by varying the motor design parameters in a layer model and a d-q model, machine single- and multi-objective design optimizations are carried out to improve the thrust density of the motor based on the motor weight and the motor efficiency multiplied by its power factor by defining various objective functions including a flexible objective function. A genetic algorithm is employed to search for the optimal design. The results confirm that an overall improvement in the thrust mean, efficiency multiplied by the power factor, and thrust to the motor weight ratio are obtained. Several design conclusions are drawn from the motor analysis and the design optimization. Finally, a finite element analysis is employed to evaluate the effectiveness of the employed machine models and the proposed optimization method.

Power System Equilibrium Optimization (EOPT) with a Nonlinear Interior Point Method (비선형 내점법을 이용한 전력계통 평형점 최적화 (EOPT))

  • Song, Hwa-Chang;Dosano, Jose Rodel
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.8-9
    • /
    • 2006
  • This paper presents a new methodology to calculate an optimal solution of equilibrium to power system differential algebraic equations. It employs a nonlinear interior point method for solving the optimization formulation, which includes dynamic equations representing two-axis synchronous generator models with AVR and speed governing control, algebraic equations, and steady-state nonlinear loads. Equilibrium optimization (EOPT) is useful for diverse purposes in power system analysis and control with consideration of the system frequency constraint.

  • PDF

Two-Parameter Optimization of CANDU Reactor Power Controller

  • Park, Jong-Woon-;Kim, Sung-Bae-
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.146-149
    • /
    • 1994
  • A nonlinear dynamic optimization has been performed for reactor power control system of CANDU 6 nuclear power plant considering xenon, fuel and moderator temperature feedback effects. Integral-of-Time-multiplied Absolute-Error (ITAE) criterion has been used as a performance index of the system behavior. Optimum controller gain are found by searching algorithm of Sequential Quadratic Programming (SQP). System models are referenced from most recent literatures. Signal flow network construction and optimization have been done by using commercial computer software package.

  • PDF

An Effective Experimental Optimization Method for Wireless Power Transfer System Design Using Frequency Domain Measurement

  • Jeong, Sangyeong;Kim, Mina;Jung, Jee-Hoon;Kim, Jingook
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.208-220
    • /
    • 2017
  • This paper proposes an experimental optimization method for a wireless power transfer (WPT) system. The power transfer characteristics of a WPT system with arbitrary loads and various types of coupling and compensation networks can be extracted by frequency domain measurements. The various performance parameters of the WPT system, such as input real/imaginary/apparent power, power factor, efficiency, output power and voltage gain, can be accurately extracted in a frequency domain by a single passive measurement. Subsequently, the design parameters can be efficiently tuned by separating the overall design steps into two parts. The extracted performance parameters of the WPT system were validated with time-domain experiments.

Sequential Optimization for Subcarrier Pairing and Power Allocation in CP-SC Cognitive Relay Systems

  • Liu, Hongwu;Jung, Jaijin;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1638-1653
    • /
    • 2014
  • A sequential optimization algorithm (SOA) for resource allocation in a cyclic-prefixed single-carrier cognitive relay system is proposed in this study. Both subcarrier pairing (SP) and power allocation are performed subject to a primary user interference constraint to minimize the mean squared error of frequency-domain equalization at the secondary destination receiver. Under uniform power allocation at the secondary source and optimal power allocation at the secondary relay, the ordered SP is proven to be asymptotically optimal in maximizing the matched filter bound on the signal-to-interference-plus-noise ratio. SOA implements the ordered SP before power allocation optimization by decoupling the ordered SP from the power allocation. Simulation results show that SOA can optimize resource allocation efficiently by significantly reducing complexity.

Comparison of Particle Swarm Optimization and the Genetic Algorithm in the Improvement of Power System Stability by an SSSC-based Controller

  • Peyvandi, M.;Zafarani, M.;Nasr, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2011
  • Genetic algorithms (GA) and particle swarm optimization (PSO) are the most famous optimization techniques among various modern heuristic optimization techniques. These two approaches identify the solution to a given objective function, but they employ different strategies and computational effort; therefore, a comparison of their performance is needed. This paper presents the application and performance comparison of the PSO and GA optimization techniques for a static synchronous series compensator-based controller design. The design objective is to enhance power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem, and both PSO and GA optimization techniques are employed to search for the optimal controller parameters.

A Study on Optimization of Electric Power Facilities Applied Matrix System at 25.8kV GIS (25.8kV급 GIS에 Matrix System을 적용한 전력설비 최적화 연구)

  • Lee, Yang-Mi;Nam, Jae-Woo;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.507-512
    • /
    • 2017
  • Recently, more electric power facilities have been miniaturized and it is noted that the facilities maintenance will be essential through operation optimization. In this paper we applied and examined the operation optimization of electric power facilities by applying Matrix system which can improve reliability to minimize outage and recover failure rapidly when blackouts happen at 25.8kV Gas Insulated Switchgear(GIS). The fundamental problem for facilities maintenance of GIS can happen due to indeterminable internal state in real time. Matrix optimization organizes action states in all containers which contain pressurized $SF_6$ Gas such as circuit breaker, disconnector switch, bus for utilizing them each area. Then, we connect it with power system to monitor and control internal state remotely in real time, and we can minimize blackout zone or outage. Considering above process, we improved stability of overall facilities.

A Study on Power System State Estimation and bad data detection Using PSO (PSO기법을 이용한 전력계통의 상태추정해법과 불량정보처리에 관한 연구)

  • Ryu, Seung-Oh;Jeong, Hee-Myung;Park, June-Ho;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.261-263
    • /
    • 2008
  • In power systems operation, state estimation takes an important role in security control. For the state estimation problem, the weighted least squares(WLS) method and the fast decoupled method have been widely used at present. But these algorithms have disadvantage of converging local optimal solution. In these days, a modern heuristic optimization method such as Particle Swarm Optimization(PSO), are introduced to overcome the problems of classical optimization. In this paper, we proposed particle swarm optimization (PSO) to search an optimal solution of state estimation in power systems. To demonstrate the usefulness of the proposed method, PSO algorithm was tested in the IEEE-57 bus systems. From the simulation results, we can find that the PSO algorithm is applicable for power system state estimation.

  • PDF