• 제목/요약/키워드: power method

검색결과 22,310건 처리시간 0.042초

대용량 컨버터의 방열판 설계 (Heatsink Design of High Power Converter)

  • 김찬기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권4호
    • /
    • pp.194-202
    • /
    • 1999
  • Various ways of designing heat sink are available for commercial high power converters and among them, the method of air cooling is the most popular and practical method than any other ones. In this paper, a practical method of cooling high power converter, which includes a method of reducing noise and vibration caused by the fan and a method of estimating the gap and contact resistances existing between the thyristor and heat sink, is presented. Finally, the heat transfer analysis and implementation methods of heat sink for high power converter is presented.

  • PDF

수력 및 앙수발전기의 가변출력운전을 고려한 기동전지 계획에 관한 연구 (Unit Commitment Considering Variable Power of Hydro and Pumped Storage Hydro Units)

  • 송길영;이범;김용하
    • 대한전기학회논문지
    • /
    • 제43권3호
    • /
    • pp.351-362
    • /
    • 1994
  • This paper presents a new method for solving a long term unit commitment problem including hydro and pumped storage hydro units in a large scale power system. The proposed method makes it possible to get variable power of hydro and pumpde storage hydro units and results in the better unit commitment with good convergency. Moreover this paper proposes an unit commitment algorithm to consider variable power of these units effectively by Lagrangian Relaxation method. By applying the proposed method to the test system and the real system, it is verified the usefulness of this method.

INSTANTANEOUS COMPENSATING POWER FLOW DIAGRAM OF ACTIVE POWER FILTER

  • Jung, Y.G.;Ha, F.rashima;Lim, Y.C.;Yang, S.H.;Chang, Y.H.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.883-887
    • /
    • 1998
  • The goal of this paper is to present an instantaneous compensating power flow of active power filter(APF) by graphical method that could be practicable to compensate the power in both case of behaving in an instantaneous rectifying mode and an instantaneous inverting mode. To ensure the validity of the proposed method, computer simulation is achieved. Proposed method can be present more exquisite and physically meaningful power flow than conventional method in the instantaneous compensating power flow diagram of APF.

  • PDF

요일 특성을 고려한 일별 최대 전력 수요예측 알고리즘 개발 (Development of Daily Peak Power Demand Forecasting Algorithm Considering of Characteristics of Day of Week)

  • 지평식;임재윤
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.307-311
    • /
    • 2014
  • Due to the increasing of power consumption, it is difficult to construct accurate prediction model for daily peak power demand. It is very important work to know power demand in next day for manager and control power system. In this research, we develop a daily peak power demand prediction method considering of characteristics of day of week. The proposed method is composed of liner model based on AR model and nonlinear model based on ELM to resolve the limitation of a single model. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

A New Approach for Accurate RTL Power Macro-Modeling

  • Kawauchi, Hirofumi;Taniguchi, Ittetsu;Fukui, Masahiro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권1호
    • /
    • pp.11-19
    • /
    • 2010
  • Register transfer level power macromodeling is well known as a promising technique for accurate and efficient power estimation. This paper proposes effective approaches based on the tablebased method for the RTL power macro-modeling. The new parameter SD, which characterizes the distribution of switching activities for each gate in the circuit, is one of the contributions. The new parameter SD has strong correlation with power consumption. We also propose an accurate table reference method considering the circuit characteristics. The table reference method is applicable for every table-based method and outputs more accurate power value. The experimental results show that the combination of the proposed methods reduces max error 30.36% in the best case, comparing conventional methods. The RMS error is also improved 1.70% in the best case.

무정전전원장치 병렬운전을 위한 인버터의 출력 위상 동기화 방법 (Output Phase Synchronization Method of Inverter for Parallel Operation of Uninterruptible Power System)

  • 김희주;박종면;오세형
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.235-241
    • /
    • 2020
  • In this paper, we propose the bus/bypass synchronization phase lock loop (B-Sync PLL) method using each phase voltage controller of a parallel UPS inverter. The B-Sync PLL included in each phase voltage control system of parallel UPS inverters has the transient response and the phase synchronization error at grid normal or blackout. The validity of this method is verified by simulation and experiment. As a result, the parallel UPS inverters using the proposed method confirmed that the output phase was continuously synchronized when a grid blackout, improving the transient response characteristics for stable load power supply and equal load sharing.

Development of a Novel Tracking System for Photovoltaic Efficiency in Low Level Radiation

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.405-411
    • /
    • 2010
  • This paper proposes a novel tracking algorithm considering radiation to improve the power of a photovoltaic (PV) tracking system. The sensor method used in a conventional PV plant is unable to track the sun's exact position when the intensity of solar radiation is low. It also has the problem of malfunctions in the tracking system due to rapid changes in the climate. The program method generates power loss due to unnecessary operation of the tracking system because it is not adapted to various weather conditions. This tracking system does not increase the power above that of a power of tracking system fixed at a specific position due to these problems. To reduce the power loss, this paper proposes a novel control algorithm for a tracking system and proves the validity of the proposed control algorithm through a comparison with the conventional PV tracking method.

Load and Mutual Inductance Identification Method for Series-Parallel Compensated IPT Systems

  • Chen, Long;Su, Yu-Gang;Zhao, Yu-Ming;Tang, Chun-Sen;Dai, Xin
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1545-1552
    • /
    • 2017
  • Identifying the load and mutual inductance is essential for improving the power transfer capability and power transfer efficiency of Inductive Power Transfer (IPT) systems. In this paper, a steady-state load and mutual inductance identification method focusing on series-parallel compensated IPT systems is proposed. The identification model is established according to the steady-state characteristics of the system. Furthermore, two sets of identification results are obtained, and then they are analyzed in detail to eliminate the untrue one. In addition, the identification method can be achieved without extra circuits so that it does not increase the complexity of the system or the control difficulty. Finally, the feasibility of the proposed method has been verified by simulation and experimental results.

Regulated Incremental Conductance (r-INC) MPPT Algorithm for Photovoltaic Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1544-1553
    • /
    • 2019
  • The efficiency of photovoltaic generation systems depends on the maximum power point tracking (MPPT) technique. Among the various schemes presented in the literature, the incremental conductance (INC) method is one of the most frequently used due to its superb tracking ability under changes in insolation and temperature. Generally, conventional INC algorithms implement a simple duty-cycle updating rule that is mainly found on the polarity of the peak-power evaluation function. However, this fails to maximize the performance in both steady-state and transient conditions. In order to overcome this limitation, a novel regulated INC (r-INC) method is proposed in this paper. Like the compensators in automatic control systems, this method applies a digital compensator to evaluate the INC function and improve the capability of power tracking. Precise modeling of a new MPPT system is also presented in the optimized design process. A 120W boost peak power tracker is utilized to obtain comparative test results and to confirm the superiority of the proposed method over existing techniques.

Temporal Classification Method for Forecasting Power Load Patterns From AMR Data

  • Lee, Heon-Gyu;Shin, Jin-Ho;Park, Hong-Kyu;Kim, Young-Il;Lee, Bong-Jae;Ryu, Keun-Ho
    • 대한원격탐사학회지
    • /
    • 제23권5호
    • /
    • pp.393-400
    • /
    • 2007
  • We present in this paper a novel power load prediction method using temporal pattern mining from AMR(Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.