• Title/Summary/Keyword: power means

Search Result 2,331, Processing Time 0.023 seconds

Simultaneous Information and Power Transfer Using Magnetic Resonance

  • Lee, Kisong;Cho, Dong-Ho
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.808-818
    • /
    • 2014
  • To deal with the major challenges of embedded sensor networks, we consider the use of magnetic fields as a means of reliably transferring both information and power to embedded sensors. We focus on a power allocation strategy for an orthogonal frequency-division multiplexing system to maximize the transferred power under the required information capacity and total available power constraints. First, we consider the case of a co-receiver, where information and power can be extracted from the same signal. In this case, we find an optimal power allocation (OPA) and provide the upper bound of achievable transferred power and capacity pairs. However, the exact calculation of the OPA is computationally complex. Thus, we propose a low-complexity power reallocation algorithm. For practical consideration, we consider the case of a separated receiver (where information and power are transferred separately through different resources) and propose two heuristic power allocation algorithms. Through simulations using the Agilent Advanced Design System and Ansoft High Frequency Structure Simulator, we validate the magnetic-inductive channel characteristic. In addition, we show the performances of the proposed algorithms by providing achievable ${\eta}$-C regions.

Present Status of Power Sustem Research in Japan (일본에 있어서의 전력계통공학 연구)

  • Sekine, Yasuji
    • 전기의세계
    • /
    • v.27 no.5
    • /
    • pp.5-12
    • /
    • 1978
  • 1.Power utilities and CRIEPI are very active in almost all aspects of power systems research. 2.About 50% of research activity of CRIEPI is made under the joint work with power utilities. 3.Research motivation of manufactures are mainly stimulated by the need of power utilities and manufacturers are closely collaborating with power utilities. 4.Main effort of universities is concentrated upon the theoretical aspects of network analysis and the means of stability improvement. Univer sities are doing research rather independently of industry unless inexceptional cases. 5.Universities are making a significant contribution to the exploration of new horizon of power systems engineering, namely, in the research on the social impact on the future of power system. 6.Current main interest of power systems reserch is centered around the stability problem and power system operation and control. Research activity in power system planning is rather low as compared to that in these two major fields. A similar statement holds for the analysis of electromagnetic transients and short circuit analysis. However a new research field is sprouting in the area of power system protection.

  • PDF

Thickness measurements of a Cr coating deposited on Zr-Nb alloy plates using an ECT pancake sensor

  • Jeong Won Park;Bonggyu Ji;Daegyun Ko;Hun Jang;Wonjae Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3260-3267
    • /
    • 2023
  • Zr-Nb alloy have been widely used as fuel rods in nuclear power plants. However, from the Fukushima nuclear accident, the weakness of the rod was revealed under harsh conditions, and research on the safety of these types of rods was conducted after the disaster. The method of depositing chromium onto the existing Zr-Nb alloy fuel rods is being considered as a means by which to compensate for the weakness of Zr-Nb alloy rods because chromium is strong against oxidation at high temperatures and has high strength. In order to secure these advantages, it is important to maintain the Cr thickness of the rods and properly inspect the rods before and during their use in power generation. Eddy current testing is a typical means of evaluating the thickness of thin metals and detecting surface defects. Depending on the size and shape of the inspected object, various eddy current sensors can be applied. In particular, because pancake sensors can be manufactured in very small sizes, they can be used for inspections even in narrow spaces, such as a nuclear fuel assembly. In this study, an eddy current technique was developed to confirm the feasibility of Cr coating thickness evaluations. After determining the design parameters of the pancake sensor by means of a FEM simulation, a FPCB pancake sensor was manufactured and the optimal frequency was selected by measuring minute changes in the Cr-coating thickness using the developed sensor.

A Study on the Electromagnetic Transients at Switching Capacitor Banks in a Electric Distribution Electric Power Distribution Substation (배전변전소에서 캐패시터 뱅크 투입시 일어나는 전자과도 현상에 관한 연구)

  • 김경철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.92-99
    • /
    • 2002
  • Transient in an electric distribution system are mainly generated by switching. This paper presents analysis of switching surge and means of limiting the voltage magnification transient for high voltage power systems by using the EDSA's EMTAP software package. One means of limiting the voltage magnification transient is to convert the end-user power factor contraction capacitor banks to harmonics filters. An inductance in series with the capacitor bank was used to decrease the transient voltage at the customer bus to acceptable levels. And also simulation results used the EDSA harmonics analysis program show the effect of harmonics reduction.

Design of Granular-based Neurocomputing Networks for Modeling of Linear-Type Superconducting Power Supply (리니어형 초전도 전원장치 모델링을 위한 입자화 기반 Neurocomputing 네트워크 설계)

  • Park, Ho-Sung;Chung, Yoon-Do;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1320-1326
    • /
    • 2010
  • In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.

Customer Load Pattern Analysis using Clustering Techniques (클러스터링 기법을 이용한 수용가별 전력 데이터 패턴 분석)

  • Ryu, Seunghyoung;Kim, Hongseok;Oh, Doeun;No, Jaekoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.61-69
    • /
    • 2016
  • Understanding load patterns and customer classification is a basic step in analyzing the behavior of electricity consumers. To achieve that, there have been many researches about clustering customers' daily load data. Nowadays, the deployment of advanced metering infrastructure (AMI) and big-data technologies make it easier to study customers' load data. In this paper, we study load clustering from the view point of yearly and daily load pattern. We compare four clustering methods; K-means clustering, hierarchical clustering (average & Ward's method) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). We also discuss the relationship between clustering results and Korean Standard Industrial Classification that is one of possible labels for customers' load data. We find that hierarchical clustering with Ward's method is suitable for clustering load data and KSIC can be well characterized by daily load pattern, but not quite well by yearly load pattern.

A Clustering-Based Fault Detection Method for Steam Boiler Tube in Thermal Power Plant

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.848-859
    • /
    • 2016
  • System failures in thermal power plants (TPPs) can lead to serious losses because the equipment is operated under very high pressure and temperature. Therefore, it is indispensable for alarm systems to inform field workers in advance of any abnormal operating conditions in the equipment. In this paper, we propose a clustering-based fault detection method for steam boiler tubes in TPPs. For data clustering, k-means algorithm is employed and the number of clusters are systematically determined by slope statistic. In the clustering-based method, it is assumed that normal data samples are close to the centers of clusters and those of abnormal are far from the centers. After partitioning training samples collected from normal target systems, fault scores (FSs) are assigned to unseen samples according to the distances between the samples and their closest cluster centroids. Alarm signals are generated if the FSs exceed predefined threshold values. The validity of exponentially weighted moving average to reduce false alarms is also investigated. To verify the performance, the proposed method is applied to failure cases due to boiler tube leakage. The experiment results show that the proposed method can detect the abnormal conditions of the target system successfully.

The Resisting Body: Figurative Painting as a Means to Register Social Protest in Malaysian Art (저항하는 몸: 말레이시아 미술에서 사회적 저항의 수단으로서 형상회화)

  • Fan, Laura
    • The Journal of Art Theory & Practice
    • /
    • no.8
    • /
    • pp.185-215
    • /
    • 2009
  • In Malaysia, figurative painting has increasingly become a means for artists to pose questions about presumptions of power and assumptions of history. The body, its potentially breached boundaries and defenses, forms an integral component of the battle for political influence. The degree of control over one's own and other people's bodies has become a measuring stick to determine the power of potential political leaders. Anxiety about boundaries and access to powerful bodies is intertwined with the questions of who has the right to hold power; the relevance of moral bodies and of what comprises an ideal self or selves. These questions are raised in intriguing ways in contemporary Malaysian art. While eschewing a direct take on current politics, Malaysian artists have increasingly turned to the body to address issues in Malaysian history, culture and the distribution of power. This paper will explore some works by three artists in particular, Wong Hoy Cheong, Nadiah Bamadhaj and Ahmad Fuad Osman use the figure to problematise dominant narratives in Malaysian history. Their work variously challenge political, racial and gender hierarchies and in so doing, reveal them as social constructions.

  • PDF

Potential of MHD in Improving the Performance of and Generating Power in Scramjets (MHD의 스크램제트 성능 개선과 전력 생산 잠재력)

  • Parent, Bernard;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.310-313
    • /
    • 2008
  • Magnetohydrodynamics (MHD) devices have received considerable attention in recent years as a means to either improve the propulsive characteristics of hypersonic cruise missiles or as a means to generate power at low cost in drag and weight aboard scramjet powered vehicles. Based on more complete physical models than previously used, it is here argued that the use of MHD is not valuable in improving the performance of hypersonic propulsion systems through prevention of boundary layer separation or power bypass. This is due to the inevitable high amount of Joule heating accompanying MHD flow control having considerable undesired adverse effects on the engine performance. On the other hand, preliminary estimates indicate that MHD is likely to succeed in generating high amounts of power with little additional drag to feed megawatt-class energy weapons on-board scramjet engines.

  • PDF

A Study on Consumers' Perception and Willingness to Pay for Fruits and Vegetables Using Renewable Energy (신재생에너지 이용 과채류에 대한 소비자 인식 및 지불의사에 관한 연구)

  • Kim, Seong-Hwi;Lee, Choon-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.4
    • /
    • pp.485-505
    • /
    • 2021
  • This study investigated consumers' perceptions and willingness to pay (WTP) for fruit and vegetables grown using renewable energy such as solar power, geothermal, waste heat from incinerators, hot water from thermal power plants. To this end, this study conducted an online survey of 1,050 consumers in Seoul, Gyeonggi, and the six metropolitan cities, and the main findings are as follows. First, most of the consumers perceived climate change as a serious problem, and 82.8% recognized the government's declaration of carbon zero was appropriate, which means that the government's active response to climate change is important. Second, on the pros and cons of the use of renewable energy when cultivating fruits and vegetables, opinions in favor of solar power were the highest, followed by geothermal heat, waste heat from waste incineration plants, and thermal power generation hot drainage. Third, at least 28.0% to 41.7% of consumers were willing to purchase fruits and vegetables using renewable energy more expensive than fruits grown using fossil energy such as kerosene. This means that the fruit and vegetable market using renewable energy is valuable as a niche market.