• Title/Summary/Keyword: power means

Search Result 2,331, Processing Time 0.021 seconds

Design and Analysis for Parallel Operation of Power MOSFETs Using SPICE (SPICE를 이용한 MOSFET의 병렬운전 특성해석 및 설계)

  • 김윤호;윤병도;강영록
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.251-258
    • /
    • 1994
  • To apply the Power MOSFET to the high powerd circuits, the parallel operation of the Power MOSFET must be considered because of their low power rating. This means, in practical applications, design methods for the parallel operations are required. However, it is very difficult to investigate the problem of parallel operations by directly changing the internal parameters of the MOSFET. Thus, in this paper, the effects of internal parameters for the parallel operation are investigated using SPICE program which is often used and known that the program is very reliable. The investigation results show that while the gate resistance and gate capacitances are the parameters which affect to the dynamic switching operations, the drain and source resistances are the parameters which affect to the steady-state current unbalances. Through this investigation, the design methods for the parallel operation of the MOSFET are suggested, which, in turn, contributes to the practical use of Power MOSFETs.

  • PDF

Performance Analysis of Contactless Electrical Power Transfer for Maglev

  • Hasanzadeh, S.;Vaez-Zadeh, S.
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2012
  • Contactless electrical power transfer through an air gap is a revived technology for supplying energy to many movable applications including Maglev. In this paper, magnetic equivalent circuits and analytical models of contactless electrical power transfer systems are developed and evaluated through experiment. Overall coupling coefficient and overall efficiency are introduced as means for evaluating the systems' performance. Compensating capacitors in primary and secondary sides of the systems improve the overall coupling coefficient and overall efficiency. Using the analytical models, the effects of different parameters and variables such as air gap and load current are analyzed to give a high coupling coefficient and an improved efficiency of power transfer for different compensation structures.

The effectof the multiple nakagami faded AMPS interferers on the capacity of the imperfect power controlled DS/CDMA system (다수의 나카가미(nakagami) 페이딩을 받은 AMPS 간섭파가 불완전 전력제어된 DS/CDMA 시스템의 용량에 미치는 영향)

  • 김남수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3196-3204
    • /
    • 1996
  • We analyze the capacity of the imperfect power controlled DS/CDMA system with the Nakagami faded AMPS interferers by means of the analytical approach. Unlike the theoretical aassumption, the power control of the DS/CDMA system is not perfect. Therefore in this analysis we consider various parameters which cause the capacityreduction of the DS/CDMA system, the imperfect power control, the Nakagami fading index, he processing gain, and the number of AMPS interferers. The analytical results are compared with the Prasad's results which are considered only the imperfect power control of the DS/CDMA system. It is shown that the DS/CDMA capacity is decreased according to the increase of the deviation of the imperfect power control, to icrease the number pf the analog interfering users, and to decrease the processing gain.

  • PDF

An Experimental Study on the Small Capacity EHD Power Generation (소용량 EHD 발전에 관한 실험적 연구)

  • Jhoun, C.S.;Lee, J.B.;Lim, E.C.
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.58-68
    • /
    • 1989
  • This paper describes an experimental study that was performed to determine the limiting factors on the power output in the closed cycle Electro-Hydro-Dynamic generator of small capacity. A corona discharge for producing unipolar charged particles used as the charging method. The experiment demonstrated that the corona method of charging was an efficient and effective means of producing unipolar charged particles. Four factors having an effect on the power output characteristics of EHD generator are discussed and examined experimentally, using methyl alcohol and kerosene as working fluides; a. The conversion length between attractor and collector. b. The corona current of Emitter. c. The flow velocity of working fluids. d. Load resistance. This results are as follows; 1) There in a critical value in conversion length for its maximum power output. 2) Power output increases almost linearly with corona current and flow velocity. 3) There is the critical value of load resistance producing a maximum power output. 4) Kerosene is known better working fluid than Methyl alcohol in this EHD generator.

  • PDF

Data Supply Voltage Reduction Scheme for Low-Power AMOLED Displays

  • Nam, Hyoungsik;Jeong, Hoon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.727-733
    • /
    • 2012
  • This paper demonstrates a new driving scheme that allows reducing the supply voltage of data drivers for low-power active matrix organic light-emitting diode (AMOLED) displays. The proposed technique drives down the data voltage range by 50%, which subsequently diminishes in the peak power consumption of data drivers at the full white pattern by 75%. Because the gate voltage of a driving thin film transistor covers the same range as a conventional driving scheme by means of a level-shifting scheme, the low-data supply scheme achieves the equivalent dynamic range of OLED currents. The average power consumption of data drivers is reduced by 60% over 24 test images, and power consumption is kept below 25%.

A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed (다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계)

  • 서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

A Study on the Enhancement of Available Transfer Capability Using the Flexible AC Transmission System (FACTS)

  • Gim, Jae-Hyeon;Kim, Yang-Il;Jeung, Sung-Won
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.192-200
    • /
    • 2004
  • This paper evaluates FACTS control on the available transfer capability (ATC) enhancement. Technical merits of FACTS technology on boosting ATC are analyzed. More effective control means for line flow and bus voltage require the application of FACTS. In this paper, the power flow calculation method for the power systems with FACTS is based on the current injection model (CIM) and the Newton-Raphson method. An integrated scheme for ATC calculation, which considers the dynamic characteristic of the power system, is suggested. The study is applied to the IEEE 57-bus power system to demonstrate the effectiveness of FACTS control on ATC enhancement.

Physical Modeling of SiC Power Diodes with Empirical Approximation

  • Hernandez, Leobardo;Claudio, Abraham;Rodriguez, Marco A.;Ponce, Mario;Tapia, Alejandro
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.381-388
    • /
    • 2011
  • This article presents the development of a model for SiC power diodes based on the physics of the semiconductor. The model is able to simulate the behavior of the dynamics of the charges in the N- region based on the stored charge inside the SiC power diode, depending on the working regime of the device (turn-on, on-state, and turn-off). The optimal individual calculation of the ambipolar diffusion length for every phase of commutation allows for solving the ambipolar diffusion equation (ADE) using a very simple approach. By means of this methodology development a set of differential equations that models the main physical phenomena associated with the semiconductor power device are obtained. The model is developed in Pspice with acceptable simulation times and without convergence problems during its implementation.

A Study on the Quantatitive Evaluation of Voltage Stability Improvement Effect By the T/L-Loss System Identification Method (송전손실 상태식별법을 이용한 전압안정성 개선효과의 정량적 평가에 관한 연구)

  • Choi, Jong-Key;Lee, Bong-Yong;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.45-47
    • /
    • 1994
  • The simulation of reactive power compensation in 5-bus and 25-bus system was conducted using transmission-line loss system identification method. Sensitivities of maximum load-power with respect to reactive power compensation was identified by the simulation. With sufficient reactive power compensation at the first voltage-collapsing load-bus, the first voltage collapse could be prevented until the next voltage-collapsing load-bus lost its voltage stability. And the total compensated reactive power at the first voltage-collapsing bus means reactive power margin of voltage collapse or distance to voltage collapse. This quantity can be useful for determining the size of compensating devices or the site to compensate.

  • PDF

Pressure Contact Interconnection for High Reliability Medium Power Integrated Power Electronic Modules

  • Yang, Xu;Chen, Wenjie;He, Xiaoyu;Zeng, Xiangjun;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.544-552
    • /
    • 2009
  • This paper presents a novel spring pressure contact interconnect technique for medium power integrated power electronics modules (IPEMs). The key technology of this interconnection is a spring which is made from Be-Cu alloy. By means of the string pressure contact, sufficient press-contact force and good electrical interconnection can be achieved. Another important advantage is that the spring exhibits excellent performance in enduring thermo-mechanical stress. In terms of manufacture procedure, it is also comparatively simple. A 4 kW half-bridge power inverter module is fabricated to demonstrate the performance of the proposed pressure contact technique. Electrical, thermal and mechanical test results of the packaged device are reported. The results of both the simulation and experiment have proven that a good performance can be achieved by the proposed pressure contact technique for the medium power IPEMs.