• Title/Summary/Keyword: power loss calculations

Search Result 44, Processing Time 0.027 seconds

On the Significance of Turbulence Models and Unsteady Effect on the Flow Prediction through A High Pressure Turbine Cascade

  • El-Gendi, M.M.;Lee, Sang-Wook;Son, Chang-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.938-945
    • /
    • 2011
  • Unsteady flow simulations through a transonic turbine vane were carried out for an isentropic Mach number of 1.02 and a Reynolds number of $10^6$. The main objective of the study is to investigate the effect of unsteadiness due to vortex shedding on the flow in transonic regime. The steady and the time-averaged unsteady results by employing three different turbulence models: shear stress transport (SST), k-${\omega}$, and ${\omega}$ Reynolds stress models were compared. The comparisons were emphasized on the isentropic Mach number along the blade and total pressure loss at the cascade exit. The results showed that both steady and unsteady calculations have good agreement with experimental data along the blade surface. However, at cascade exit, the unsteady calculations have much better agreement with experimental data than steady calculations. Based on these, we conclude that the unsteady flow calculations are essential for these types of problems.

The Evaluation of Reliability in a Composite Power System using Simplified Simulation Techniques (간략화 모의 기법을 이용한 대전력 계통 신뢰도 계산)

  • Kim, Dong-Hee;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.221-223
    • /
    • 1997
  • This paper presents the Simplified Simulation Technique that evaluates the adequacy of an electric power system using only a portion of the outage period instead of each hour. Reliability evaluation may be performed at various hierarchical levels, generation, transmission and distribution system. The Simplified Simulation Technique simplifies the adequacy evaluation process reducing the number of calculations considerably. Therefore the computation time can be significantly reduced. This paper is done to compare the results of the simulation model with the Simplified Simulation Technique against the results of the simulation model without the Simplified Simulation Technique. The reliability indices such as the Loss of Load Probability(LOLP), the loss of load frequency(LOLF), the average duration of load curtailment(DLC) and the average demand of load curtailment(ADLC) are calculated. The proposed methods and procedures are tested by using the IEEE-RTS with 24-bus system.

  • PDF

INSERTION LOSS MEASUREMENT OF SILENCERS BY DOUBLE PAIR MICROPHONE TECHNIQUE

  • Jung, S.S.;Pu, Y.C.;Kim, M.G.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.704-709
    • /
    • 1994
  • The insertion loss is the measured change in power flux at a specified receiver, when the acoustic transmission path between it and the source is modified by the insertion of silencer element. Such measurements have clear and valid physical meaning particularly if the source impedance remains while the transmission path is altered. When the invarient condition is satisfied, the insertion loss is given by the ratio of the acoustic pressure in upstream to that in downstream of the silencer, and that of the particle velocity. The measurement is consisted of using an adaptation of the two microphone method to obtain the complex amplitude of the sound in upstream tube as well as in downstream tube of the silencer. Examples of the data, reduced and presented in terms of the pressure ratio and particle speed ratio, are compared with the theoretical calculations.

  • PDF

Distribution Network Reconfiguration Using Feeder Modeling (피더모델링을 이용한 배전계통 재구성)

  • Kim, Se-Ho;An, Jin-Oh;Lee, Soo-Mook
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1156-1158
    • /
    • 1998
  • This paper Presents two distribution-feeder models to simplify complicated distribution system calculations. These equivalent models are developed to simulate the total series voltage drop at the end of the given feeder and the total line loss of the given feeder accurately. In addition, the proposed models are bidirectional. This means that power infeed can be at either end and the model is accurate. Also, it is shown that the proposed models are suitable for network reconfiguration.

  • PDF

An Extended Approach for Newton-Raphson Power Flow Calculation (Newton-Raphson 조류계산법(潮流計算法)의 확장(擴張) 방안(方案) 연구(硏究))

  • Shin, Joong-Rin;Yim, Han-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.205-210
    • /
    • 1992
  • The power flow calculations are the most important and powerful tools in the various studies of power system engineering. Newton-Raphson method, among the various power flow calculation techniques, is normally used due to its rapidness of numerical convergency. In the conventional Newton-Raphson method, however, there are some unrealistic assumptions, in which all the system power losses are considered to be supplied by the slack bus generator. Introducing the system power loss formula and augmenting the conventional Newton-Raphson power flow method, we can relieve the unrealistic assumption and improve the performance of power flow calculation. In this study, A new approach for handling the losses and augmenting the conventional power flow problem is proposed. The proposed method estimates the increamental changes of active power on each generation bus with respect to the change of total system power losses and the estimated value are used to update the slack bus power. If some studies for more theoritical investigations and verifications are followed, the proposed approach will show some improvement of the conventional method and give lots of contribution to increase the performance of power flow techniques in power systems engineering.

  • PDF

Optimum Operation of Power System Using Fuzzy Linear Programming (퍼지 선형계획법을 적용한 전력계통의 최적운용에 관한 연구)

  • 박성대;정재길;조양행
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • A method of optimal active and reactive power control for economic operation in electrical power system is presented in this paper. The major features and techniques of this paper are as follows: 1) The method presented for obtaining the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power Balance equation considering transmission loss, and for determining directly optimal active power allocation without repeating calculations. 2) More reasonable and economic profit by minimizing total fuel cost of thermal power plants instead of using transmission loss as objective function of reactive Power control can be achieved. 3) Particularly in reactive power control, computing time can be considerably reduced by using Fuzzy Linear Programming instead of using conventional Linear Programming.

  • PDF

Analytical Approach for Rotor Loss Prediction of Permanent Magnet Synchronous Generator with Multi-Pole Rotor (다극 회전자를 갖는 영구자석 동기 발전기의 회전자 손실 예측을 위한 해석적 접근)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Choi, Jang-Young;Ko, Kyoung-Jin;Sung, Tae-Hyun;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.719-720
    • /
    • 2008
  • This paper deals with analytical approach for rotor loss prediction of permanent magnet synchronous generator(PMSG). The rotor losses of synchronous generator are induced by the magnets. Since stator of our model is skewed, slotting effect can be negligible for our PM wind turbine generator. In order to calculate eddy current, this paper derives analytical solutions by the magnetic vector potential. Finally this paper compared analytical result with eddy current density obtained from finite element(FE) calculations using phase current harmonics analysis.

  • PDF

Reactivity feedback effect on loss of flow accident in PWR

  • Foad, Basma;Abdel-Latif, Salwa H.;Takeda, Toshikazu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1277-1288
    • /
    • 2018
  • In this work, the reactor kinetics capability is used to compute the design safety parameters in a PWR due to complete loss of coolant flow during protected and unprotected accidents. A thermal-hydraulic code coupled with a point reactor kinetic model are used for these calculations; where kinetics parameters have been developed from the neutronic SRAC code to provide inputs to RELAP5-3D code to calculate parameters related to safety and guarantee that they meet the regulatory requirements. In RELAP5-3D the reactivity feedback is computed by both separable and tabular models. The results show the importance of the reactivity feedback on calculating the power which is the key parameter that controls the clad and fuel temperatures to maintain them below their melting point and therefore prevent core melt. In addition, extending modeling capability from separable to tabular model has nonremarkable influence on calculated safety parameters.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.