• Title/Summary/Keyword: power line data transmission

Search Result 241, Processing Time 0.028 seconds

Analysis of Operation Performance of a Micro Gas Turbine Generator System (마이크로 가스터빈 발전시스템의 운전성능 분석)

  • Lee, J. J.;Kim, T. S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.13-21
    • /
    • 2005
  • This study aims to analyze operating performance of a micro gas turbine with the aid of detailed measurements of various system parameters. In addition to embedded measurements, parameters such as exhaust temperatures, engine inlet temperatures and fuel flow rates are measured. Variations in measured data and estimated performance parameters are analyzed. Those data are processed to calculate losses along the power transmission line and the net gas turbine performance (power and efficiency based on the gas turbine shaft end) is isolated from the overall system performance. A method to estimate characteristic parameters such as component efficiencies, based on the comparison between measured and predicted performance data, is suggested and exemplified for the full load condition.

Analysis of Operation Performance of a Micro Gas Turbine Generator System (마이크로 가스터빈 발전시스템의 운전성능 분석)

  • Lee, J. J.;Kim, T S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.132-139
    • /
    • 2004
  • This study aims to analyze operating performance of a micro gas turbine with the aid of detailed measurements of various system parameters. In addition to embedded measurements, parameters such as exhaust temperatures, engine inlet temperatures and fuel flow rates are measured Variations in measured data and estimated performance parameters are analyzed. Those data are processed to calculate losses along the power transmission line and the net gas turbine performance (power and efficiency based on the gas turbine shaft end) is isolated from the overall system performance. On the basis of the measured data, analytical approach is tried to estimate design characteristic and performance parameters such as component efficiencies and unmeasured temperatures.

  • PDF

Environmental Noise Prediction of Power Plants (발전소 환경소음 예측)

  • 조대승;유병호
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.621-629
    • /
    • 1997
  • For computer aided design and costruction of low noisy power plants, indoor and outdoor noise prediction program has been developed. The program utilizes the predefined data of noise sources and building materials and has the faculty to estimate the source level using the empirical formula in case of the measured data not being available. In the noise prediction, the mutual noise propagation between indoor and outdoor sites are considered. The outdoor noise source in the calculation of geometric divergence effects is modelled as the omni-directional finite line or planar source according to the source geometry and the receiving points. Outdoor noise prediction is carried out to consider the diffraction effect due to plant structures as well as the attenuation effect due to atmospheric absorption and soft ground. The results of indoor and outdoor noise prediction for a recently constructed diesel engine power plant show good agreement with the measured.

  • PDF

A Study on the Power Monitoring System using GPS for Accurate Time Synchronization (GPS 정밀시각동기를 이용한 전력계통 모니터링 시스템에 관한 연구)

  • 김혁수;전성준;김기택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.285-285
    • /
    • 2000
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paper describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

A Lecture Note on PU Method thru Calculation of a Simple DC Circuit and Voltage/Fault Analysis of Industrial Power Systems using Actual Data (PU법에 의한 DC 회로계산 및 실계통 데이터를 이용한 전압강하/고장계산 방법)

  • Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.45-54
    • /
    • 2014
  • This paper presents a lecture note of pu method for power system analysis. The author tries to help students in class better understand the fundamental of pu calculation using a very simple DC circuit. And a voltage drop calculation by pu method for a distribution system is given to help understand the importance of the vector reference in AC circuit analysis. A short current calculation by pu method for a power system with a generator, transformer and transmission line is also presented to show how pu calculation can be applied to real power systems, in which all the data are the ones currently being used by KEPCO and other industrial sites.

Electrical Insulation Design of a 154 kV Class HTS Cable and Termination (154 kV급 고온초전도 케이블 및 단말의 전기절연 설계)

  • Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang -Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2007
  • A transmission class high-temperature superconducting(HTS) power cable system is being developed in Korea. For insulation design of this cable the grading method of insulating paper is proposed. Two kinds of laminated polypropylene paper that has different thickness has been used as the electrical insulation material. The use of graded insulation gives improved mechanical bending properties of the cable. In a HTS cable technology the terminations are important components. A HTS cable termination is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors. in the axial direction. There is also a temperature difference from ambient to about 77 K. For insulation design of this termination, glass fiber reinforced plastic(GFRP) was used as the insulation material of the termination body, and the capacitance-graded method is proposed. This paper will report on the experimental investigations on impulse breakdown and surface flashover characteristics of the insulation materials for insulation design of a transmission class HTS power cable and termination. Based on these experimental data, the electrical insulation design of a transmission class HTS power cable and termination was carried out.

A System Development, Performance Assessment, and Service Implementation of ATM-based High-rate Digital Subscriber Line (HDSL) (ATM 기반 HDSL 개발, 동 선로 상의 성능 평가 및 서비스 구현)

  • 양충열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1562-1574
    • /
    • 1998
  • We, in this paper, have implemented T1, E1 and fractional E1 HDSL(High-bit-rate digital subscriber line) function over an ATM switching system. The maxi$\mu$ loop lengths for subscriber service and cell loss rates to meet the bit error rate of 10$^{-7}$ at transmission of 2B1Q HDSL data E1 rate over existing telephone copper wires in the presence of the significant impairments such as NEXT(Nearned crosstalk), impulse noise, power line noise and longitudinal over the CSAs environment consisting of 26 gauge and 25 gauge unloaded copper telephone lines has assessed. HDSL will intially be used to serve private-DS1, ISDN-BRA, and DLC feeders, later DS1 extension from optic fiber cable. We also present market provision for the HDSL.

  • PDF

Analysis of Packet Transmission Delay in the DC Power-Line Fault Management System using IEEE 802.15.4 (IEEE 802.15.4를 적용한 직류배전선로 장애관리시스템에서 패킷전송 지연시간 분석)

  • Song, Han-Chun;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.259-264
    • /
    • 2014
  • IEEE 802.15.4 has been emerging as the popular choice for various monitoring and control applications. In this paper, a fault management system for DC power-lines has been designed using IEEE 802.15.4, in order to monitor DC power-lines in real time, and to rapidly detect faults and shut off the line where such faults occur. Numbers were allocated for each node and unslotted CSMA-CA method of IEEE 802.15.4 was used, the performance of which was analyzed by a simulation. For such purpose, a total of 60 bits of the control data consisting of 16 bits of the current, 16 bits of the amplitude, 28 bits of the terminal state data were sent out, and the packet transfer rate and the transmission delay time of the fault management system for DC power-lines were measured and analyzed. When the traffic load was 330 packets per second or lower, the average delay time was shown to be shorter than 0.02 seconds, and when the traffic load was 260 packets per second or lower, the packet transfer rate was shown to be 99.99% or higher. Therefore, it was confirmed that the stringent condition of US Department of Energy (DOE) could be satisfied if the traffic load was 260 packets per second or lower, The results of this study can be utilized as basic data for the establishment of the fault management system for DC power-lines using IEEE 802.15.4.

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.

Prediction of Impedance Characteristics of Multi-Layer Ceramic Capacitor Based on Coupled Transmission Line Theory (결합 전송선로 이론을 이용한 적층 세라믹 커패시터의 임피던스 특성 예측)

  • Jeon, Jiwoon;Kim, Jonghyeon;Pu, Bo;Zhang, Nan;Song, Seungjae;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.135-147
    • /
    • 2015
  • With the miniaturization and digitalization of electronics industry, demand for Multi-Layer Ceramic Capacitor(MLCC) has increased steadily because of its various applications such as DC Blocking, Decoupling and Filtering etc. The modeling techniques of MLCC has been studied for a long time but most of these modeling method can only be applied after measurement and this has some losses of material, time in both production stage and measurement stage. This paper proposes the modeling method which can predict the frequency characteristics of MLCC from structure data and material data in design stage. The impedance of N-Layer Capacitor can be expressed in differential mathematical form based on coupled transmission line equations. By using this formula, we can predict the impedance of MLCC. As a result, proposed modeling is correspond with simulation, and it takes much less time to obtain the result than the simulation.