• Title/Summary/Keyword: power law exponent

Search Result 145, Processing Time 0.029 seconds

The near infrared image of GRB100205A field

  • Kim, Yongjung;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2012
  • GRB100205A is a Gamma Ray Burst (GRB) which is suspected to be at redshift z=11-13 due to its very red H-K color($(H-K)_{vega}=2.1{\pm}0.5$). We observed a field centered at GRB100205A with Wide Field Camera (WFCAM) at United Kingdom Infrared Telescope (UKIRT) in Hawaii, in order to search a quasar that could be located around the GRB. The images were obtained in J, H, and K filters covering a square area of $0.78deg^2$. Our J-, H-, and K-band data reach the depths of 22.5, 22.1, and 21.0 mag (Vega) at $5{\sigma}$, respectively. Also using z-band image observed by CFHT, we find 8 candidates that have colors consistent with a quasar at z=11-13(non-detection in z-, J-band and $(H-K)_{vega}$ > 1.6). However, the shallow depths of J-, H-band are not enough to verify their true nature. Instead, we identify many red objects to be old or dusty galaxies at $z{\geq}3$. The number density of such objects appears about twice or more than that of the field of Cosmological Evolution Survey (COSMOS) and Ultra Deep Survey (UDS) of UKIRT Infrared deep sky survey (UKIDSS). On scales between 0.18' and 15' the correlation function is well described by a power law with an exponent of ${\approx}-0.9$ and this implies that those objects are like galaxies. It is interesting that many red galaxies exist in the region where the GRB was detected.

  • PDF

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.

Estimating the Individual Dry Weight of Sheet Form Macroalgae for Laboratory Studies (실험실 연구를 위한 엽상형 해조류의 생체량 추정 방법)

  • Kim, Sangil;Youn, Seok-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.244-250
    • /
    • 2019
  • We investigated the relationship between morphological characteristics and individual dry weight to develop a method for estimating the individual dry weight of sheet form macroalgae: Ulva australis, Ulva linza, Pachymeniopsis lanceolata, and Pyropia yezoensis. In Total, 319 thalli of various sizes were collected at six sites from February 2017 to December 2018. An interspecific allometric exponent of 0.28 was found for length-biomass allometry in four sheet form macroalgae, corresponding to a 1/4-power law for primary producers. The relationships between surface area and individual dry weight, as well as between individual fresh weight and individual dry weight, were found to fit significantly using linear regression equations. This explained 94-99 % of individual dry weight, indicating that surface area and individual fresh weight can be used to accurately estimate individual dry weight. We propose the use of this method when experimental processes do not allow individual dry weight to be measured directly, so researchers can save both time and expense.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Nonlinear FG-CNT effect on the critical buckling load of nanocomposite beams with different boundary conditions

  • Youcef Tlidji;Mohamed Zidour;Rachid Zerrouki;Abdelillah Benahmed;Boumediene Serbah;Kada Draiche;Khaled Bouakkaz
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.323-334
    • /
    • 2024
  • This paper deals with the effect of non-linear volume fraction distribution of carbon nanotube in the FG-CNTRC beams on the critical buckling via a hyperbolic shear deformation theory. Here, different boundary condition was considered including hinged hinged, clamped clamped and clamped-free. Single-walled carbon nanotubes are aligned and distributed in the polymer matrix in different ways to reinforce it and the material properties of (CNTRC) beams are assumed to vary gradually along the thickness direction, following a new exponential power law distribution of (CNT). The effective material properties of nanocomposite beams are estimated using the rule of mixture. The governing equations of the mathematical models are obtained by applying Hamilton's principle. The results provided of mathematical models in this work are compared and validated with similar ones in the literature. The critical buckling loads of nanocomposite beams with different boundary conditions of linear and non-linear distribution of CNT volume fraction were obtained. The effects of several parameters, including the type of beam, the volume fraction of carbon nanotubes (CNTs), the exponent degree (n), and the aspect ratio, were investigated. The distribution non-linearity of CNT volume fraction in the beam has a significant impact on the mechanical properties, particularly in buckling behavior with different boundary conditions.

The Protein-Protein Interaction Network of Hereditary Parkinsonism Genes Is a Hierarchical Scale-Free Network

  • Yun Joong Kim;Kiyong Kim;Heonwoo Lee;Junbeom Jeon;Jinwoo Lee;Jeehee Yoon
    • Yonsei Medical Journal
    • /
    • v.63 no.8
    • /
    • pp.724-734
    • /
    • 2022
  • Purpose Hereditary parkinsonism genes consist of causative genes of familial Parkinson's disease (PD) with a locus symbol prefix (PARK genes) and hereditary atypical parkinsonian disorders that present atypical features and limited responsiveness to levodopa (non-PARK genes). Although studies have shown that hereditary parkinsonism genes are related to idiopathic PD at the phenotypic, gene expression, and genomic levels, no study has systematically investigated connectivity among the proteins encoded by these genes at the protein-protein interaction (PPI) level. Materials and Methods Topological measurements and physical interaction enrichment were performed to assess PPI networks constructed using some or all the proteins encoded by hereditary parkinsonism genes (n=96), which were curated using the Online Mendelian Inheritance in Man database and literature. Results Non-PARK and PARK genes were involved in common functional modules related to autophagy, mitochondrial or lysosomal organization, catecholamine metabolic process, chemical synapse transmission, response to oxidative stress, neuronal apoptosis, regulation of cellular protein catabolic process, and vesicle-mediated transport in synapse. The hereditary parkinsonism proteins formed a single large network comprising 51 nodes, 83 edges, and three PPI pairs. The probability of degree distribution followed a power-law scaling behavior, with a degree exponent of 1.24 and a correlation coefficient of 0.92. LRRK2 was identified as a hub gene with the highest degree of betweenness centrality; its physical interaction enrichment score was 1.28, which was highly significant. Conclusion Both PARK and non-PARK genes show high connectivity at the PPI and biological functional levels.

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths (미세균열의 길이 분포를 이용한 결의 평가)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.165-180
    • /
    • 2015
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. In this study, the length - cumulative frequency diagrams were used for expressing the distribution characteristics of microcrack. The diagrams for the six directions were arranged in the magnitude of density(${\rho}$). These diagrams show an order of H2 < H1 < G2 < G1 < R2 < R1 from the related chart. Among six diagrams, the diagram for hardway 2(H2) occupies the lowermost region on the left. On the contrary, the diagram for rift 1(R1) occupies the uppermost region on the right. Curve patterns of the two diagrams change from uniform to exponential distribution type in accordance with the increased density. The overall distribution characteristics of the diagrams were well evidenced from the magnitude of the exponent(${\lambda}$) and length of line oa related to the exponential straight line. The magnitude of exponent governing the values of slope(${\theta}$) is inversely proportional to the values of microcrack parameters such as number(N), length(L) and density. On the contrary, length of line oa is directly proportional to the values of the above three parameters. Above microcrack parameters related to the order of arrangement of diagrams show an order of hardway(H1 + H2) < grain(G1 + G2) < rift(R1 + R2). The distribution characteristics of progressive variation are found among the six diagrams. The order of arrangement of the diagrams indicates a relative magnitude of the rock cleavage. Meanwhile, the parameters such as slope, exponent, density and length of line oa were arranged in an order of H2 < H1 < G2 < G1 < R2 < R1. The variation curves of a smooth quadratic function are shown from the related chart. From the correlation chart between density and the above parameters, a common regularity following power-law correlation function was derived. Finally, the analysis for the rock cleavage was conducted through the combination between the diagram and microcrack parameter. This type of combination contribute to the progressivity in evaluation for the rock cleavage.

A Study on the Creep Deformation Characteristic of AZ31 Mg Alloy at High Temperature (AZ3l 마그네슘 합금의 고온 크리이프 변형특성에 관한 연구)

  • An Jungo;Kang Daemi;Koo Yang;Sim Sungbo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2005
  • The apparent activation energy Qc, the applied stress exponent n, and rupture life have been determined from creep test results of AZ31 Mg alloy over the temperature range of 200$^{\circ}C$ to 300$^{\circ}C$ and the stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller with data acquisition computer. At the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy fur the creep deformation was nearly equal to that of the self diffusion of Mg alloy including aluminum From the above results, at the temperature of $200^{\circ}C{\sim}220^{\circ}C$ the creep deformation for AZ31 Mg alloy seemed to be controlled by dislocation climb but controlled by dislocation glide at $280^{\circ}C{\sim}300^{\circ}C$ .And relationship beween rupture time and stress at around the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and again at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, respectively, appeard as fullow; log$\sigma$=-0.18(T+460)(logtr+21)+5.92, log$\sigma$ = -0.25(T+460)(logtr+21)+8.02 Also relationship beween rupture time and steady state creep rate appears as follow; ln$\dot$ =-0.881ntr-2.45