DOI QR코드

DOI QR Code

Estimating the Individual Dry Weight of Sheet Form Macroalgae for Laboratory Studies

실험실 연구를 위한 엽상형 해조류의 생체량 추정 방법

  • Kim, Sangil (Ocean Climate & Ecology Research Division, National Institute of Fisheries Science) ;
  • Youn, Seok-Hyun (Ocean Climate & Ecology Research Division, National Institute of Fisheries Science)
  • 김상일 (국립수산과학원 기후변화연구과) ;
  • 윤석현 (국립수산과학원 기후변화연구과)
  • Received : 2019.03.18
  • Accepted : 2019.04.26
  • Published : 2019.04.30

Abstract

We investigated the relationship between morphological characteristics and individual dry weight to develop a method for estimating the individual dry weight of sheet form macroalgae: Ulva australis, Ulva linza, Pachymeniopsis lanceolata, and Pyropia yezoensis. In Total, 319 thalli of various sizes were collected at six sites from February 2017 to December 2018. An interspecific allometric exponent of 0.28 was found for length-biomass allometry in four sheet form macroalgae, corresponding to a 1/4-power law for primary producers. The relationships between surface area and individual dry weight, as well as between individual fresh weight and individual dry weight, were found to fit significantly using linear regression equations. This explained 94-99 % of individual dry weight, indicating that surface area and individual fresh weight can be used to accurately estimate individual dry weight. We propose the use of this method when experimental processes do not allow individual dry weight to be measured directly, so researchers can save both time and expense.

엽상형 해조류의 간접적인 건중량 추정을 위해 구멍갈파래(Ulva australis), 잎파래(Ulva linza), 개도박(Pachymeniopsis lanceolata), 방사무늬김(Pyropia yezoensis)의 형태적 특성과 생체량의 관계를 분석하였다. 시료는 2017년 2월부터 2018년 12월 까지 남해안 6곳에서 채집되었으며, 총 319개체가 분석에 사용되었다. 엽상형 해조류 네 종의 길이와 생체량에 대한 상대성장 지수는 0.28로 일반적인 1/4 (0.25) 지수법칙에 해당하였다. 네 종의 엽체의 표면적과 습중량은 각각 건중량과 유의한 선형관계를 보였으며, 건중량의 94 ~ 99%를 설명할 수 있었다. 이 결과는 엽상형 해조류의 표면적 또는 습중량을 통해 개체의 건중량을 매우 정확하게 추정할 수 있다는 것을 의미한다. 이 방법론은 실험실 연구에서 건중량을 직접 측정할 수 없을 때 쉽고 빠르게 활용할 수 있으며, 추가적으로 소요되는 시간과 비용을 절약할 수 있을 것이다.

Keywords

References

  1. Boubonari, T., P. Malea and T. Kevrekidis(2008), The green seaweed Ulva rigida as a bioindicator of metals (Zn, Cu, Pb and Cd) in a low-salinity coastal environment, Botanica Marina, Vol. 51, No. 6, pp. 472-484. https://doi.org/10.1515/BOT.2008.059
  2. Brown, J. H. and G. B. West(2000), Scaling in biology, Oxford University Press, New York, USA.
  3. Duarte, C. M., J. J. Middelburg and N. Caraco(2005), Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, Vol. 2, pp. 1-8. https://doi.org/10.5194/bg-2-1-2005
  4. FAO(2018), Global Aquaculture Production, http://www.fao.org/fishery/statistics/global-aquaculture-production/en (Accessed: February, 2018).
  5. Fletcher, R. L.(1996), The occurrence of "Green Tides" - a review, pp. 7-43 In Marine benthic vegetation (Schramm W and Nienhuis PH eds.), Springer, Berlin, Germany.
  6. Gevaert, F., M.-A. Janquin and D. Davoult(2008), Biometrics in Laminaria digitata: A useful tool to assess biomass, carbon and nitrogen contents, Journal of Sea Research, Vol. 60, No. 3, pp. 215-219. https://doi.org/10.1016/j.seares.2008.06.006
  7. He, J-H.(2008), Geometrical approach to length-biomass allometry in predominantly bidimensional seaweeds, African Journal of Biotechnology, Vol. 7, No. 8, pp. 1009-1010.
  8. Hwang, M. S., S-M. Kim, D-S. Ha, J. M. Baek, H-S. Kim and H-G. Choi(2005), DNA sequences and identification of Porphyra cultivated by natural seeding on the Southwest coast of Korea, Algae, Vol. 20, No. 3, pp. 183-196. https://doi.org/10.4490/ALGAE.2005.20.3.183
  9. Jeon, Y. E., X. F. Yin, S. S. Lim, C-K. Chung and I. J. Kang(2012), Antioxidant activities and acetylcholinesterase inhibitory activities from seaweed extracts, Journal of Korean Society of Food Science and Nutrition, Vol. 41, No. 4, pp. 443-449. https://doi.org/10.3746/jkfn.2012.41.4.443
  10. Kang, C-K., E. J. Choy, Y. Son, J-Y. Lee, J. K. Kim, Y. Kim and K-S. Lee(2008), Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses, Marine Biology, Vol. 153, No. 6, pp. 1181-1198. https://doi.org/10.1007/s00227-007-0890-y
  11. Kang, Y. H., S. Kim, J-B. Lee, I. K. Chung and S. R. Park(2014), Nitrogen biofiltration capacities and photosynthetic activity of Pyropia yezoensis ueda (Bangiales, Rhodophyta): Groundwork to validate its potential in integrated multi-trophic aquaculture (IMTA), Journal of Applied Phycology, Vol. 26, No. 2, pp. 947-955. https://doi.org/10.1007/s10811-013-0214-1
  12. Kim, K. Y., Y. S. Ahn and I. K. Lee(1991), Growth and morphology of Enteromorpha linza (L.) J. Ag. and E. prolifera (Müller) J. Ag. (Ulvales, Chlorophyceae), Korean Journal of Phycology, Vol. 6, No. 1, pp. 31-45.
  13. Kim, K. D.(1999), Taxonomic studies on Ulva pertusa Kjellman (Ulvophyceae, Chlorophyta) in Korea, MS Thesis, Gyeongsang National University, Jinju, Korea.
  14. Kim, G. H., K-H. Moon, J-Y. Kim, J. Shim and T. A. Klochkova(2014a), A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact, Algae, Vol. 29, No. 4. pp. 249-265. https://doi.org/10.4490/algae.2014.29.4.249
  15. Kim, S., S. R. Park, Y. H. Kang, G-Y. Kim, K-S. Lee, H. Lee, N-I. Won and H-J. Kil(2014b), Usefulness of tissue nitrogen content and macroalgal community structure as indicators of water eutrophication, Journal of Applied Phycology, Vol. 26, No. 2, pp. 1149-1158. https://doi.org/10.1007/s10811-013-0194-1
  16. Kim, S., Y. H. Kang, T-H. Kim, H. J. Lee and S. R. Park(2017), Use of morphological characteristics for calculating individual biomass in the kelp Ecklonia cava, Journal of Applied Phycology, Vol. 29, No. 5, pp. 2587-2593. https://doi.org/10.1007/s10811-017-1140-4
  17. Ko, Y. W., G. H. Sung and J. H. Kim(2008) Estimation for seaweed biomass using regression: A methodological approach, Algae, Vol. 23, No. 4. pp. 289-294. https://doi.org/10.4490/ALGAE.2008.23.4.289
  18. Littler, M. M.(1980), Morphological form and photosynthetic performances of marine macroalgae: Tests of a functional / form hypothesis, Botanica Marina, Vol. 22, No. 2, pp. 161-165.
  19. Niklas, K. J. and B. J. Enquist(2001), Invariant scaling relationships for interspecific plant biomass production rates and body size, Proceedings of the National Academy of Science of the United States of America, Vol. 98, No. 5. pp. 2922-2927.
  20. Quinn, G. P. and M. J. Keough(2002), Experimental design and data analysis for biologists, Cambridge University Press, Cambridge, United Kingdom.
  21. Reed, D. C., A. Rassweiler and K. K. Arkema(2008), Biomass rather than growth rate determines variation in net primary production by giant kelp, Ecology, Vol. 89, No. 9, pp. 2493-2505. https://doi.org/10.1890/07-1106.1
  22. Robbins, B. D. and B. L. Boese(2002), Macroalgal volume: a surrogate for biomass in some green algae, Botanica Marina, Vol. 45, No. 6, pp. 586-588. https://doi.org/10.1515/BOT.2002.063
  23. Rollon, R. N., M. S. Samson, M. Y. Roleda, K. G. Arano, M. W. B. Vergara and W. Y. Licuanan(2003) Estimating biomass from the cover of Gelidiella acerosa along the coasts of eastern Philippines, Botanica Marina, Vol. 46, No. 6, pp. 497-502. https://doi.org/10.1515/bot.2003.051
  24. Rothman, M. D., R. J. Anderson, J. J. Bolton, C. J. T. Boothroyd and F. A. Kemp(2010) A simple method for rapid estimation of Ecklonia maxima and Laminaria pallida biomass using floating surface quadrats, African Journal of Marine Science, Vol. 32, No. 1, pp. 137-143. https://doi.org/10.2989/18142321003714906
  25. Scrosati, R.(2006), Length-biomass allometry in primary producers: Predominantly bidimensional seaweeds differ from the "universal" interspecific trend defined by microalgae and vascular plants, Canadian Journal of Botany, Vol. 84, No. 7, pp. 1159-1166. https://doi.org/10.1139/b06-077
  26. Seo, M-J., H-S. Choi, O-H. Lee and B-Y. Lee(2013), Grateloupia lanceolata (Okamura) Kawaguchi, the edible red seaweed, inhibits lipid accumulation and reactive oxygen species production during differentiation in 3T3-L1 cells, Phytotherapy Research, Vol. 27, No. 5, pp. 655-663. https://doi.org/10.1002/ptr.4765
  27. Vasquez, J. A., S. Zuniga, F. Tala, N. Piaget, D. C. Rodriguez and J. M. A. Vega(2014) Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem, Journal of Applied Phycology, Vol. 26, No. 2, pp. 1081-1088. https://doi.org/10.1007/s10811-013-0173-6