• Title/Summary/Keyword: power factor correction(PFC)

Search Result 315, Processing Time 0.025 seconds

On-board charger equipped with new power factor corrected circuit for plug-in hybrid electric vehicle (새로운 역률보상회로를 적용한 플러그인 하이브리드 전기차 탑재용 완속 충전기)

  • Kim, Seong-hye;Lee, Ju-young;Kang, Feel-soon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.140-141
    • /
    • 2012
  • 본 논문은 새로운 역률보상회로를 적용한 플러그인 하이브리드 전기 자동차 탑재형 완속 충전기(On-Board Charger, OBC)를 제안한다. 제안하는 완속 충전기용 역률보상회로 (Power Factor Correction, PFC)는 기존의 부스트 컨버터를 기본으로 하는 역률보상회로와 동일한 개수의 회로 부품과 입 출력전압 관계를 가진다. 회로 구조상 전파 정류된 DC 전압을 저장하는 입력 커패시터와 입력 인덕터의 에너지가 저장되는 출력 커패시터가 직렬 결합되어 DC-link 전압을 형성하므로 출력 커패시터의 동작전압(Working voltage)을 낮출 수 있어 단가절감이 가능하다. 제안된 역률보상 회로를 적용한 플러그인 하이브리드 전기 자동차 탑재형 완속 충전기에 대한 동작 특성을 해석하고 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

Power system analysis and power consumption breakdown for an ac PDP system (AC PDP 시스템의 전원회로 해석과 소비전력 분석)

  • Ahn, Jae-Woo;Ha, Jung-Jun;Choi, Byung-Cho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.446-449
    • /
    • 2001
  • This paper presents the results of the power system analysis and power loss breakdown peformed on a 40-inch ac plasma display panel (PDP) TV set. The architecture and function of power system is reviewed. The power flow inside the PDP TV set is presented, and the distribution of the power loss is analyzed. It was found that the sustain driver circuit and power factor correction (PFC) circuit are the two major sources of the power loss. The results of this paper can be used as a preliminary guideline to improve the architecture and efficiency of power systems for ac PDP application systems.

  • PDF

A new hybrid control scheme for reduction of secondary diode voltage stresses Based on interleaved PFC Asymmetrical Half Bridge Topology (Asymmetrical 반브리지 컨버터의 이차측 다이오드 전압스트레스저감을 위한 새로운 하이브리드 제어기법)

  • Park, Nam-Ju;Lee, Dong-Yun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1416-1418
    • /
    • 2005
  • This paper presents a new hybrid control method of asymmetrical half-bridge converter(AHBC) with low voltage stresses of the diodes and interleaved PFC(power factor correction). The proposed new control scheme can observe variation of secondary diodes voltage stresses by variation of duty ratio and then decide the control portions which are asymmetrical control and PFM(Pulse Frequency Modulation). Therefore, the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes, low conduction loss according to the low voltage drop and wide zvs range by load variation. Through simulation results, the validity of the proposed control scheme is demonstrated.

  • PDF

A High Efficiency Power Conversion Circuit with Wide ZVS Range for Sustaining Power Module of Large Size PDP (넓은 영전압 스위칭 범위를 갖는 대화면 PDP용 유지 전원단을 위한 고효율 전력 변환 회로)

  • Park, K.H.;Lee, W.J.;Youn, M.J.;Moon, G.W.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.279-282
    • /
    • 2005
  • Recently, due to the launching of digital broadcasting service, a demand of PDP TV with large screen size is sharply rising. PDP power module is mainly divided into power factor correction (PFC) stage and sustaining power stage. Especially, sustaining power module has pulsating load characteristics. So, the hard switching at light load condition causes low efficiency and thermal problem. Therefore, a new power conversion circuit for sustaining power module of 60' PDP is proposed whose ZVS is obtained by additional ZVS tank. This paper presents properties of the proposed converter through mode analysis, numerical analysis. And a 900w prototype for sustaining power module of 60' PDP is produced to verify the analytic results. As an experimental results, ZVS is achieved from full load to 10% load variation and more than 92% of high efficiency is obtained at 10% load condition.

  • PDF

Zero Torque Control of Switched Reluctance Motor for Integral Charging (충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어)

  • Rashidi, A.;Namazi, M.M;Saghaian, S.M.;Lee, D.H.;Ahn, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

A Study on the Power Control Characteristics of a Power Supply for Electrodeless Lamp (무전극 램프(Electrodeless Lamp) 구동용 전원장치의 전력제어 특성에 관한 연구)

  • Lee, Sung-Geun;Jeon, Su-Kyun;Jang, Min-Kyu;Kim, Dong-Sok;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.65-67
    • /
    • 2003
  • This paper describes a design of power supply for electrodeless lamp system to be easy to control electric power widely keeping the high power factor. Proposed system is composed of power factor correction(PFC) circuit, half bridge(HB) inverter, high voltage transformer, full wave rectifier to supply dc number kV's magnetron(MGT) anode voltage in the second of high voltage transformer and magnetron. It was confirmed that the proposed circuits can correct the 99.8[%] power factor and control input power of the magnetron up to 33.3[%] linearly by adjusting of pulse frequency of the inverter through the experiment.

  • PDF

The Optimal Compensation Gain Algorithm Using Variable Step for Buck-type Active Power Decoupling Circuits (벅-타입 능동 전력 디커플링을 위한 가변 스텝을 적용한 최적 보상 이득 알고리즘)

  • Baek, Ki-Ho;Kim, Seung-Gwon;Park, Sung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • This work proposes a simple control method of a buck-type active power decoupling circuit that can minimize the ripple values in the dc link voltage. The proposed method utilizes a simplified duty calculation method and an optimal compensation gain tracking algorithm with variable-step approach. Thus, the dc link voltage ripple can be effectively reduced through the proposed method along with rapid response in tracking the optimum compensation gain. Moreover, the proposed method has better dynamic responses in the load fluctuation or abnormal situation. MATLAB/Simulink simulation and hardware-in-the-loop-simulation(HILS)-based experimental results are presented to validate the effectiveness of the proposed control method.

Crest Factor Reduction of Electronic Ballast for Fluorescent Lamps Using Pulse Frequency Modulation Control (펄스 주파수 변조 기법을 이용한 형광등 안정기의 파고율(Crest Factor) 저감 기법)

  • Song, Joo-Ho;Lee, Dong-Yun;Song, Joong-Ho;Choi, Ju-Yeop;Choy, Ick;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2559-2561
    • /
    • 1999
  • The life of a fluorescent lamp is greatly affected by starting scenario and crest factor. This paper will propose a new crest factor control method in electronic ballast for fluorescent lamp using Pulse Frequency Modulation (PFM), which employs a passive Power Factor Correction (PFC) circuit in the input stage. The operation of parellel-loaded circuit, the switching frequency. and the characteristics of electronic ballast with the proposed PFM control scheme are described in detail, and its validity is verified by the simulation results.

  • PDF

High frequency Dual Mode control LLC converter with wide input voltage range (넓은 입력전압범위의 고주파수 구동 Dual Mode control LLC 컨버터)

  • Joo, Hyung ik;Yang, Jung-woo;Kang, Jeong-il;Han, Sang kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.235-236
    • /
    • 2015
  • 본 논문에서는 universal line 입력 및 전 부하영역에서 영전압 스위칭(Zero Voltage Switching) 보장을 통한 500kHz 고 주파수 구동의 Dual Mode control LLC 컨버터를 제안한다. 제안 회로는 전 부하영역에서의 ZVS(영전압 스위칭)보장으로 고주파 구동이 가능하여 전원회로의 부피 중 상당량을 차지하는 수동소자의 부피를 대폭 저감 할 수 있다. 또한, 소용량 전원회로는 PFC(Power Factor Correction)의 규제가 없기 때문에 universal line 입력에 대응이 가능해야하므로, 제안회로는 변화하는 입력전압과 출력전류에 따라 PFM과 PWM의 두 가지 모드로 동작하여 universal line 입력 및 전 부하 영역에서 정확한 출력전압 제어가 가능하다. 최종적으로 제안 회로의 타당성 검증을 위하여 60W급 adapter의 전원회로를 위한 시작품을 제작하여 고찰된 실험 결과를 제시한다.

  • PDF

Distortion Elimination for Buck PFC Converter with Power Factor Improvement

  • Xu, Jiangtao;Zhu, Meng;Yao, Suying
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.10-17
    • /
    • 2015
  • A quasi-constant on-time controlled buck front end in combined discontinuous conduction mode and boundary conduction mode is proposed to improve power factor (PF).When instantaneous AC input voltage is lower than the output bus voltage per period, the buck converter turns into buck-boost converter with the addition of a level comparator to compare input voltage and output voltage. The gate drive voltage is provided by an additional oscillator during distortion time to eliminate the cross-over distortion of the input current. This high PF comes from the avoidance of the input current distortion, thereby enabling energy to be delivered constantly. This paper presents a series analysis of controlling techniques and efficiency, PF, and total harmonic distortion. A comparison in terms of efficiency and PF between the proposed converter and a previous work is performed. The specifications of the converter include the following: input AC voltage is from 90V to 264V, output DC voltage is 80V, and output power is 94W.This converter can achieve PF of 98.74% and efficiency of 97.21% in 220V AC input voltage process.