• Title/Summary/Keyword: power estimates

Search Result 458, Processing Time 0.026 seconds

Bagged Auto-Associative Kernel Regression-Based Fault Detection and Identification Approach for Steam Boilers in Thermal Power Plants

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1406-1416
    • /
    • 2017
  • In complex and large-scale industries, properly designed fault detection and identification (FDI) systems considerably improve safety, reliability and availability of target processes. In thermal power plants (TPPs), generating units operate under very dangerous conditions; system failures can cause severe loss of life and property. In this paper, we propose a bagged auto-associative kernel regression (AAKR)-based FDI approach for steam boilers in TPPs. AAKR estimates new query vectors by online local modeling, and is suitable for TPPs operating under various load levels. By combining the bagging method, more stable and reliable estimations can be achieved, since the effects of random fluctuations decrease because of ensemble averaging. To validate performance, the proposed method and comparison methods (i.e., a clustering-based method and principal component analysis) are applied to failure data due to water wall tube leakage gathered from a 250 MW coal-fired TPP. Experimental results show that the proposed method fulfills reasonable false alarm rates and, at the same time, achieves better fault detection performance than the comparison methods. After performing fault detection, contribution analysis is carried out to identify fault variables; this helps operators to confirm the types of faults and efficiently take preventive actions.

Evaluation of a Fine-mapping Method Exploiting Linkage Disequilibrium in Livestock Populations: Simulation Study

  • Kim, JongJoo;Farnir, Frederic
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1702-1705
    • /
    • 2006
  • A simulation study was conducted to evaluate a fine-mapping method exploiting population-wide linkage disequilibrium. Data were simulated according to the pedigree structure based on a large paternal half-sib family population with a total of 1,034 or 2,068 progeny. Twenty autosomes of 100 cM were generated with 5 cM or 1 cM marker intervals for all founder individuals in the pedigree, and marker alleles and a number of quantitative trait loci (QTL) explaining a total of 70% phenotypic variance were generated and randomly assigned across the whole chromosomes, assuming linkage equilibrium between the markers. The founder chromosomes were then descended through the pedigree to the current offspring generation, including recombinants that were generated by recombination between adjacent markers. Power to detect QTL was high for the QTL with at least moderate size, which was more pronounced with larger sample size and denser marker map. However, sample size contributed much more significantly to power to detect QTL than map density to the precise estimate of QTL position. No QTL was detected on the test chromosomes in which QTL was not assigned, which did not allow detection of false positive QTL. For the multiple QTL that were closely located, the estimates of the QTL positions were biased, except when the QTL were located on the right marker positions. Our fine mapping simulation results indicate that construction of dense maps and large sample size is needed to increase power to detect QTL and mapping precision for QTL position.

Speech Enhancement Based on IMCRA Incorporating noise classification algorithm (잡음 환경 분류 알고리즘을 이용한 IMCRA 기반의 음성 향상 기법)

  • Song, Ji-Hyun;Park, Gyu-Seok;An, Hong-Sub;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1920-1925
    • /
    • 2012
  • In this paper, we propose a novel method to improve the performance of the improved minima controlled recursive averaging (IMCRA) in non-stationary noisy environment. The conventional IMCRA algorithm efficiently estimate the noise power by averaging past spectral power values based on a smoothing parameter that is adjusted by the signal presence probability in frequency subbands. Since the minimum of smoothing parameter is defined as 0.85, it is difficult to obtain the robust estimates of the noise power in non-stationary noisy environments that is rapidly changed the spectral characteristics such as babble noise. For this reason, we proposed the modified IMCRA, which adaptively estimate and updata the noise power according to the noise type classified by the Gaussian mixture model (GMM). The performances of the proposed method are evaluated by perceptual evaluation of speech quality (PESQ) and composite measure under various environments and better results compared with the conventional method are obtained.

Analysis of RP Power Amplifier Nonlinearity and BER Characteristics for Multi­Carrier Transmission System (다중반송 전송시스템을 위한 RF 전력증폭기의 비선형 특성과 BER관계 분석)

  • 신동환;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1612-1620
    • /
    • 2003
  • This papers describes a nonlinear transfer function modelling of designed GaAs FET power amplifier by measured and simulated values of designed PA amplifier for multi­carrier transmission system, With the results of PA nonlinearity characteristic, we can estimates AM­AM and AM­PM of designed PA. According to the estimated nonlinear characteristics, we can analysis the ACPR of PA for spectral regrowth, the error vector measurement(EVM) of constallation signals and bit error rate of QPSK and 64­QAM. The suggested nonlinear modelling results are used to get an accurate estimate of digital characteristics between PA amplifier and wireless multi­carrier transmission system using OFDM.

Stabilization Power Systems withan Adaptive Fuzzy Control (적응퍼지제어를 이용한 전력계통 안정화)

  • 박영환;박귀태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.117-127
    • /
    • 1998
  • Power systems have uncertain dynamics due to a variety of effects such as lightning, severe storms and equipment failures. The variation of the effective reactance of a transmission line due to a fault is an example of uncertainty in power system dynamics. Hence, a robust controller to cope with these uncertainties is needed. Recently, fuzzy controllers are becoming quite popular for robust control due to its potential of dealing with uncertain systems. Thus in this paper we design an adaptive fuzzy controller based on an input-output linearization approach for the transient stabilization and voltage regulation of a power system under a sudden fault. Also this paper proposes a fuzzy system that estimates the upper bound of uncertain term in the system dynamics to guarantee the Lyapunov stability. Simulation results show that good performance is achieved by the proposed controller.

  • PDF

Estimation of Market Power of the Wholesale and Retail Levels in the Domestic Beef Market (국산 쇠고기의 유통단계별 시장지배력 측정)

  • Jeon, Sang-Gon;Chai, Sang-Hyen;Kim, Hyun-Jung
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.201-211
    • /
    • 2010
  • This paper estimates the degree of market power of marketers in the Korean beef market, especially focusing on wholesale and retail marketing levels. Prices in various marketing levels show that there is a possibility of more price differentials than marketing costs in the Korean beef market. Annual price and quantity data are used to estimate the degree of market power in the wholesale and retail levels. The empirical results show that the domestic beef retail market is far from perfect competition and the wholesale market is relatively near to perfect competition.

Potential of MHD in Improving the Performance of and Generating Power in Scramjets (MHD의 스크램제트 성능 개선과 전력 생산 잠재력)

  • Parent, Bernard;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.310-313
    • /
    • 2008
  • Magnetohydrodynamics (MHD) devices have received considerable attention in recent years as a means to either improve the propulsive characteristics of hypersonic cruise missiles or as a means to generate power at low cost in drag and weight aboard scramjet powered vehicles. Based on more complete physical models than previously used, it is here argued that the use of MHD is not valuable in improving the performance of hypersonic propulsion systems through prevention of boundary layer separation or power bypass. This is due to the inevitable high amount of Joule heating accompanying MHD flow control having considerable undesired adverse effects on the engine performance. On the other hand, preliminary estimates indicate that MHD is likely to succeed in generating high amounts of power with little additional drag to feed megawatt-class energy weapons on-board scramjet engines.

  • PDF

The Cognitive and Economic Value of a Nuclear Power Plant in Korea

  • Lim, Gil-Hwan;Jung, Woo-Jin;Kim, Tae-Hwan;Lee, Sang-Yong Tom
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.609-620
    • /
    • 2017
  • We studied the value of a nuclear power plant by considering Koreans' willingness to pay (WTP) for neutralizing the various problems caused by building and operating a new plant. For this, we used a conjoint analysis and ordered logistic regression. We then compared the WTP estimates between various segment groups. The results revealed that each household was willing to pay an additional 99,677 Korean Won (KRW)/mo on average to resolve the negative impacts from a nuclear plant. Therefore, the yearly cognitive and economic value of a nuclear plant in Korea was about 19 trillion KRW. Through a segment analysis, we found that the more educated, younger, and poorer groups gave higher cognitive values than the less educated, older, and richer groups, respectively. Also, people who lived far from a plant gave higher values than people living near a plant, and people with more knowledge about or interest in nuclear energy gave higher values than people with less knowledge or interest. People who felt that nuclear energy is necessary gave higher values to nuclear energy than those who did not. Our results can be used as bases to set targets for promoting nuclear energy and pursuing a national project of building a nuclear power plant.

Improved AP Deployment Optimization Scheme Based on Multi-objective Particle Swarm Optimization Algorithm

  • Kong, Zhengyu;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1568-1589
    • /
    • 2021
  • Deployment of access point (AP) is a problem that must be considered in network planning. However, this problem is usually a NP-hard problem which is difficult to directly reach optimal solution. Thus, improved AP deployment optimization scheme based on swarm intelligence algorithm is proposed to research on this problem. First, the scheme estimates the number of APs. Second, the multi-objective particle swarm optimization (MOPSO) algorithm is used to optimize the location and transmit power of APs. Finally, the greedy algorithm is used to remove the redundant APs. Comparing with multi-objective whale swarm optimization algorithm (MOWOA), particle swarm optimization (PSO) and grey wolf optimization (GWO), the proposed deployment scheme can reduce AP's transmit power and improves energy efficiency under different numbers of users. From the experimental results, the proposed deployment scheme can reduce transmit power about 2%-7% and increase energy efficiency about 2%-25%, comparing with MOWOA. In addition, the proposed deployment scheme can reduce transmit power at most 50% and increase energy efficiency at most 200%, comparing with PSO and GWO.

The effect of crack length on SIF and elastic COD for elbow with circumferential through wall crack

  • Kim, Min Kyu;Jeon, Jun Hyeok;Choi, Jae Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2092-2099
    • /
    • 2020
  • Many damages due to flow-accelerated corrosion and cracking have been observed during recent in-service inspections of nuclear power plants. To determine the operability or repair for damaged pipes, an integrity evaluation related to the damaged piping system should be performed by using already proven code and standards. One of them, the ASME Code Case is most popularly used to integrity assessment in nuclear power plants. However, the recent version of CC N-513 still recommends the simplified method which means a damaged elbow is assumed as an equivalent straight pipe. In addition, to enhance the accuracy integrity assessment in elbow, several previous studies recommend that the SIF and elastic COD values for an elbow with relatively large crack could be predicted by an interpolation technique. However, those estimates for elbow with relatively large crack might be derived to inaccurate results for crack growth analysis, such as for the allowable crack size and life estimation. Therefore, in this paper, the effect of crack length (0.3≤θ1/π≤0.5) on SIF and elastic COD for elbow is systematically investigated. Then, for large crack in elbow, accurate estimates for SIF and elastic COD, which are widely used to assess the integrity of elbows, are proposed. Those proposed solutions are expected to be the technical basis for revisions of CC N-513-4 through the validation.