• Title/Summary/Keyword: power equalization

Search Result 148, Processing Time 0.023 seconds

A Direct Cell-to-Cell Charge Balancing Circuit for the EV Battery Module (전기자동차 배터리 모듈용 직접 셀 전하 균등화 회로)

  • Pham, Van-Long;Nguyen, Kim-Hung;Basit, Khan Abdul;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.401-402
    • /
    • 2015
  • In this paper a direct cell-to-cell charge balancing circuit which can transfer the charge from any cell to any cell in the battery string is introduced. In the proposed topology the energy in the high voltage cell is transferred to the low voltage cell through the simple operation of a dc-dc converter to get fast equalization. Furthermore, the charge equalization can be performed regardless of the battery module operation whether it is being charged, discharged or relaxed. The monitoring circuit composed of a DSP and a battery monitoring IC is designed to monitor the cell voltage and protect the battery. In order to demonstrate the advantages of the proposed topology, a prototype circuit was designed and applied to 12 Lithium-Ion battery module. It has been verified with the experiments that the charge equalization time of the proposed method was shortest compared with those of other methods.

  • PDF

Performance Comparison of SE-MMA and QE-MMA for Adaptive Equalization in Nonconstant modulus signal (Nonconstant modulus 신호의 적응 등화를 위한 SE-MMA와 QE-MMA 알고리즘 성능 비교)

  • Lim, Seung Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • This paper compares the SE-MMA (Signed Error-MMA) and QE-MMA (Quantized Error-MMA) adaptive equalization algorithm in order to compensates the intersymbol interference due to channel in the transmission of spectral efficient nonconstant modulus signal such as 16-QAM. In the currently MMA adaptive equalizer, the error signal is needed for the updating the tap coefficient. The SE-MMA uses the polarity of error signal for reduce the computational operation in that process, the QE-MMA consider the this polarity and finite bit power-of-2 quantized component in that process, so they has different equalization performance. In order to comparing these performance, the computer simulation was performed in the same channel and environment, the output signal constellation of equalizer, residual isi and maximum distortion, MSE, SER were applied. As a result of computer simulation, the QE-MMA have more superior performance than the SE-MMA in every performance index.

A Performance Comparison of CM-MMA and RMMA Blind Equalization Algorithm in QAM Signal Transmission (QAM 신호 전송에서 CM-MMA와 RMMA 블라인드 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.79-84
    • /
    • 2019
  • This paper compare the performance of CM-MMA (Constellation Matching-MMA) and RMMA (Region-based MMA) blind equalization algorithm for improve the QoS by minimizing the intersymbol interference that is occurred in nonlinear communication channel when transmitting the QAM signal. In the tap coefficient update for adaptive, CM-MMA use the error of nonconstant modulus signal adding the current MMA cost fuction and constellation matching error terms of sinusoidal power function, and the RMMA use the error by transfoms the nonconstant modulus signal of equalizer output constellation to 4-QAM constant modulus signal. They has different equalization performance by these error signal, it were compared in this paper by simulation, and performance index such as output signal constellation of equalizer, residual isi, maximum distortion, SER curves are applied for this. As a result of computer simulation, the RMMA has more better performance in the every performance index, convergence speed, residual value, noise robustness compared to CM-MMA.

A Performance Improvement of CR-MMA Adaptive Equalization Algorithm using Adaptive Modulus and Adaptive Stepsize (Adaptive Modulus와 Adaptive Stepsize를 이용한 CR-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.107-113
    • /
    • 2019
  • This paper proposes the Hybrid-CRMMA adaptive equalization algorithm that is possible to improves the performance of CR-MMA based on adaptive modulus and adaptive stepsize. The 16-QAM nonconstant modulus signal is reduced to 4-QAM constant modulus signal, and the error signal were obtained based on the fixed statistic modulus of transmitted signal. It is possible to improving the currently MMA adaptive equalization performance. The proposed Hybrid-CRMMA composed of adaptive modulus which is propotional to the power of equalizer output and adaptive stepsize which is function of the nonlinearties of error signal, and its improved equalization performance were confirmed by computer simulation. For this purpose, the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER that is meaning the robustness of external noise of algorithm were used. As a result of computer simulation, it was confirmed that the proposed Hybrid-CRMMA has more superior performance in every index compared to currently CR-MMA.

A Performance Evaluation of the CCA Adaptive Equalization Algorithm by Step Size (스텝 크기에 의한 CCA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.67-72
    • /
    • 2019
  • This paper evaluates the performance of CCA (Compact Constellation Algorithm) adaptive equalization algorithm by varying the step size for minimization of the distortion effect in the communication channel. The CCA combines the conventional DDA and RCA algorithm, it uses the constant modulus of the transmission signal and the considering the output of decision device by the power of compact slice weighting value in order to improving the initial convergence characteristics and the equalization noise by misadjustment in the steady state. In this process, the compact slice weight values were fixed, and the performance of CCA adaptive equalization algorithm was evaluated by the varing the three values of step size for adaptation. As a result of computer simulation, it shows that the smaller step size gives slow convergence speed, but gives excellent performance after at steady state. Especially in SER performance, the small step size gives more robustness that large values.

A Performance Comparison of DSE-MMA and DQE-MMA Adaptive Equalization Algorithm using Dither Signal (Dither 신호를 이용한 DSE-MMA와 DQE-MMA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag;You, Jeong-Bong;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2022
  • This paper compares the equalization performance of the DSE-MMA (Dithered Signed Error-MMA) and DQE-MMA (Dithered Quantized Error-MMA) adaptive equalization algorithm based on the dither signal in order to reduce the intersymbol interference occurs at communication channel. These algorithm was emerged in ordr to reduction of arithmetic operation than current MMA, it makes the independent and identical distribute the quantized error component by performing the 1 or N bit quautizer after adding the dither singal in obtaining the error signal for adapting process. It is possible to improve the robustness performance of adaptive algorithm, but degrade the MSE performance in steady state by dither signal. The paper directly compare the DSE-MMA and DQE-MMA adaptive equalization performance of the same concept of dithering in the same communication channel and signal to noise ratio by computer simulation. As a result of simulation, the DQE-MMA has more better in the every performance index, equalizer output constellation, residual isi, MSE and SER performance, but not in convergence speed.

A Novel Cell Balancing Circuit for Fast Charge Equalization (빠른 전하 균일화를 위한 새로운 구조의 셀 밸런싱 회로)

  • Park, Dong-Jin;Choi, See-Young;Kim, Yong-Wook;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2015
  • This study proposes an improved cell balancing circuit for fast equalization among lithium-ion (Li-ion) batteries. A simple voltage sensorless charge balancing circuit has been proposed in the past. This cell balancing circuit automatically transfers energy from high-to low-voltage battery cells. However, the circuit requires a switch with low on-resistance because the balancing speed is limited by the on-resistance of the switch. Balancing speed decreases as the voltage difference among the battery cells decrease. In this study, the balancing speed of the cell balancing circuit is enhanced by using the auxiliary circuit, which boosts the balancing current. The charging current is determined by the nominal battery cell voltage and thus, the balancing speed is almost constant despite the very small voltage differences among the batteries. Simulation results are provided to verify the validity of the proposed cell balancing circuit.

On the Signal Power Normalization Approach to the Escalator Adaptive filter Algorithms

  • Kim Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.801-805
    • /
    • 2006
  • A normalization approach to coefficient adaptation in the escalator(ESC) filter structure that conventionally employs least mean square(LMS) algorithm is introduced. Using Taylor's expansion of the local error signal, a normalized form of the ESC-LMS algorithm is derived. Compared with the computational complexity of the conventional ESC-LMS algorithm employs input power estimation for time-varying convergence coefficient using a single-pole low-pass filter, the computational complexity of the proposed method can be reduced by 50% without performance degradation.

Current equalization method of the rectifier diodes in LLC resonant converter Using the auxiliary winding of the transformer

  • Hyeon, Byeong-Cheol;Kim, Ji-Tae;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.143-145
    • /
    • 2009
  • The method for the current equalization of the rectifier diodes in LLC resonant converter is proposed. The method decreases the current difference between the rectifier diodes using the auxiliary winding of the transformer and asymmetrical pulse width modulation (APWM). The analytical reason of the current unbalance is investigated and the operation principle of the proposed method and APWM control loop are explained. The performance of the proposed method was verified on a 480-W, 400-V/24-V dc/dc converter.

  • PDF

Charge Equalization Converter with Parallel Primary Winding for Series Connected Lithium-Ion Battery strings (트랜스포머 1차측 병렬 구조를 가진 직렬 연결 리튬이온 배터리 전하 균일 컨버터)

  • Kim, Chol-Ho;Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.256-258
    • /
    • 2007
  • A charge equalization converter with parallel-connected primary windings of transformers is proposed in digest. The proposed work effectively balance the voltage among Lithium-Ion battery cells despite each battery cell has low voltage gap compared with its SOC. The principle of the proposed work is that the equalizing energy from all battery strings moves to the lowest voltage battery through the isolated dc/dc converter controlled by the corresponding bi-directional switch. In this digest, a prototype of four Lithium-Ion battery cells is optimally designed and implemented, and experimental results show that the proposed method has excellent cell balancing performance.

  • PDF