• Title/Summary/Keyword: power distribution line

Search Result 812, Processing Time 0.025 seconds

Study on Tension and Thermal Properties of Corrosive-fractured Steel Sleeve (강 슬리브 파단 직선 슬리브의 장력 및 열적 특성 분석 연구)

  • Ahn, Sang-Hyun;Kim, Byung-Geol;Kim, Sang-Shu;Sohn, Hong-Kwan;Kim, In-Pyo;Kim, Sung-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1036-1041
    • /
    • 2008
  • According to previous report, aged sleeves of old transmission line showed several defaulted installation patterns, which was biased or corrosive-fractured of steel sleeve installed cases. These defects can cause serious accidents such as rapid increasing of sag or falling out of overhead conductor from sleeves. Consequently, the defects lead to the major power outage. Corrosion of steel sleeve is a typical defect by aging of sleeves. And it occupied almost 25 percent of investigated aged sleeves. This paper studied thermal properties and tension for ACSR conductor in case of fractured steel sleeve model by corrosion. The temperature distribution within overhead conductor has a specific gradient. Thermal properties of splice connectors(sleeve and clamp) showed normal behavior. However, mechanical properties were worse than normal sleeves. The detailed results were presented in the text.

A Fundamental Investigation to Develope a Automatic Apparatus for Contamination Measurement (오손도 자동측정장치 개발을 위한 기초연구)

  • 최남호;한상옥
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.74-82
    • /
    • 2001
  • To reduce the maintenance expense and the possibility of electric outage and/or accident, which causes the decrease in stability and reliability of transmission/distribution line, most of all, accurate measurement for the degree of contamination should be preceded. But the conventional method (brush wiping method), which is recommended in IEC 60815, has sow significant problem in the aspect of man power, expense, error, and so forth. In this investigation, we purpose the development of a new type automatic measuring apparatus, which could measure the degree of contamination on the surface of insulator in outdoor condition. To design and evaluate the apparatus, a FLUX 2D is used, and various laboratory tests, artificial contamination tests, were carried to proof the actual performance. With the result of these effort, we can get the meaningful conclusion to develope a new type automatic apparatus for contamination measurement.

  • PDF

Characterization of Inductively Coupled Ar/CH4 Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 유도결합 Ar/CH4 플라즈마의 특성 분석)

  • Cha, Ju-Hong;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1376-1382
    • /
    • 2016
  • The discharge characteristics of inductively coupled $Ar/CH_4$ plasma were investigated by fluid simulation. The inductively coupled plasma source driven by 13.56 Mhz was prepared. Properties of $Ar/CH_4$ plasma source are investigated by fluid simulation including Navier-Stokes equations. The schematics diagram of inductively coupled plasma was designed as the two dimensional axial symmetry structure. Sixty six kinds of chemical reactions were used in plasma simulation. And the Lennard Jones parameter and the ion mobility for each ion were used in the calculations. Velocity magnitude, dynamic viscosity and kinetic viscosity were investigated by using the fluid equations. $Ar/CH_4$ plasma simulation results showed that the number of hydrocarbon radical is lowest at the vicinity of gas feeding line due to high flow velocity. When the input power density was supplied as $0.07W/cm^3$, CH radical density qualitatively follows the electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density.

Performance Analysis of Noncoherent OOK UWB Transceiver for LR-WPAN (저속 WPAN용 비동기 OOK 방식 UWB 송수신기 성능 분석)

  • Ki Myoungoh;Choi Sungsoo;Oh Hui-Myoung;Kim Kwan-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1027-1034
    • /
    • 2005
  • IEEE802.15.4a, which is started to realize the PHY layer including high precision ranging/positioning and low data rate communication functions, requires a simple and low power consumable transceiver architecture. To satisfy this requirements, the simple noncoherent on-off keying (OOK) UWB transceiver with the parallel energy window banks (PEWB) giving high precision signal processing interface is proposed. The flexibility of the proposed system in multipath fading channel environments is acquired with the pulse and bit repetition method. To analyze the bit error rate (BER) performance of this proposed system, a noise model in receiver is derived with commonly used random variable distribution, chi-square. BER of $10^{-5}$ under the line-of-sight (LOS) residential channel is achieved with the integration time of 32 ns and signal to noise ratio (SNR) of 15.3 dB. For the non-line-of-sight (NLOS) outdoor channel, the integration time of 72 ns and SNR of 16.2 dB are needed. The integrated energy to total received energy (IRR) for the best BER performance is about $86\%$.

Disign and Thermal Distribution of Intra-hyperthermia Microwave Antennas for Utero-cervical Applicators (자궁강내 온열치료를 위한 마이크로파 안테나의 제작과 온열 분포)

  • Chu, Sung-Sil;Moon, Sun-Rock
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.133-136
    • /
    • 1990
  • Intracavitary brachytherapy combined hypertermin for utero-conical cancer seems to be a promising method for salvage treatments in persistent tumors and inoperable or previously irradiated cervical recurrences. In order to heat the vaginal apex and uterus, powerfull conical antennas which are suitable for afterloading cervical applicator have been designed for use in conjuction with intracavitary radiation therapy. The antennas were constructed with conical conductive material to feed line and the effective lenght were designed proportional to microwave length, Power deposition profiles of 2450 MHz of conical antennas were studied in both phantom models and muscle tissue and compared to those of commonly used dipole antenna. Improvement of the heating pattern was found in both phantom and muscle tissue. The heating pattern produced by the conical antenna resembles an ellipsoid and then the temperature distribution in depth was extended to $2\~3\;cm$ from the effective antenna axis.

  • PDF

Stability Analysis of Concrete Plugs Installed in Pilot Tunnels for the Storage of Compressed Air (압축공기 저장용 파일롯 터널에 설치된 콘크리트 플러그의 안정성 해석)

  • Lee, Youn-Kyou;Song, Won-Kyoung;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.446-454
    • /
    • 2010
  • CAES-G/T (Compressed Air Energy Storage - Gas Turbine) power generation is a likely option for the buffer facility stabilizing the fluctuation of the renewable powers, such as wind and solar powers. Considering the geological conditions, the underground CAES facility is most probable if the CAES-G/T generation is planed in Korea. In this kind of facility, a concrete plug is installed to seal the compressed air in the container, so that the selection of the shape and dimension of concrete plug could be a critical design factor. The stability evaluation of two types of plug was carried out by investigating the distribution of the factor of safety in the plugs and the distribution of contact pressure over the contact surface. The analysis result shows that the taper-shaped plug is more structurally stable than the wedge-shaped plug for the given geological condition. Possible separation of the rock-concrete interface around the spring line of the wedge-shaped plug is anticipated, which means the possible leakage of compressed air through the side wall and also means the poor mobilization of frictional resistance on that area.

Analysis of Resonant Characteristics in High Voltage Windings of Main Transformer for Railway Vehicle using EMTP (EMTP를 이용한 철도차량용 주변압기 고압권선의 공진특성 분석)

  • Jeong, Ki-Seok;Jang, Dong-Uk;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.436-444
    • /
    • 2016
  • The primary windings of the main transformer for rolling stock have several natural frequencies that can occur internal resonance with transient voltages induced on a high voltage feeding line. Factory testing is limited in its ability to determine whether or not transient voltage with various shape and duration can be excitable. This study presents the design of a high voltage windings model and simulation and analysis of the internal resonant characteristics in terms of the initial voltage distribution and voltage-frequency relationship using the electromagnetic transients program (EMTP). Turn-based lumped-parameters are calculated using the geometry data of the transformer. And, sub-models, being grouped into the total number of layers, are composed using a ladder-network model and implemented by the library function of EMTP. Case studies are used to show the layer-based voltage-frequency relationship characteristics according to the frequency sweep and the voltage escalation and distribution aspects in time-domain simulation.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

Breakdown Characteristics and Lifetime Estimation of Rubber Insulating Gloves Using Statistical Models

  • Kim, Doo Hyun;Kang, Dong Kyu
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • This paper is aimed at predicting the life of rubber insulating gloves under normal operating stresses from relatively rapid test performed at higher stresses. Specimens of rubber insulating gloves are subject to multiple stress conditions, i.e. combined electrical and thermal stresses. Two modes of electrical stress, step voltage stress and constant voltage stress are used in specimen aging. There are two types of test for electrical stress in this experiment: the one is Breakdown Voltage (BDV) test under step voltage stress and thermal stress and the other is lifetime test under constant voltage stress and temperature stress. The ac breakdown voltage defined as the break-down point of insulation that leakage current excesses a limit value, l0mA in this experiment, is determined. Because the very high variability of aging data requires the application of statistical model, Weibull distribution is used to represent the failure times as the straight line on Weibull probability paper. Weibull parameters are deter-mined by three statistical methods i.e. maximum likelihood method, graphical method and least squares method, which employ SAS package, Weibull probability paper and FORTRAN, respectively. Two chosen models for predicting the life under simultaneous electrical and thermal stresses are inverse power model and exponential model. And the constants of life equation for multistress aging are calculated using numerical method, such as Gauss Jordan method etc.. The completion of life equation enables to estimate the life at normal stress based on the data collected from accelerated aging test. Also the comparison of the calculated lifetimes between the inverse power model and the exponential model is carried out. And the lifetimes calculated by three statistical methods with lower voltage than test voltage are compared. The results obtained from the suggested experimental method are presented and discussed.

A Study on the Development of Superheater Using High-Frequency Resonant Inverter for Induction Heating (유도가열용 고주파 공진형 인버터를 이용한 과열증기 발생장치 개발에 관한 연구)

  • 신대철;권혁민;김기환;김용주
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2004
  • This paper is described the indirect induction heated boiler system and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20〔KHz〕 to 50〔KHz〕. A specially designed Induction heater, which is composed of laminated stainless assembly with many tiny holes and interconnected spot welding points between stainless plates, is inserted into the ceramic type vessel with external working coil. This working coil is connected to the resonant inverter. In the induction heater, it's primary heating section creates low-pressure saturated steam and secondary heating section generates heat distribution evaporating fluid from the turbulence fluid which is flowing through the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from the practical point of view.