• Title/Summary/Keyword: power distribution line

Search Result 812, Processing Time 0.203 seconds

A Study on Fault of Multifunctional Battery Storage System interconnected with Distribution System (배전시스템에 연계된 다기능 전지전력저장시스템의 사고에 관한 연구)

  • Kim, Jae-Chul;Moon, Sun-Ho;Kim, In-Taek;Kim, Eung-Sang;Chu, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1244-1246
    • /
    • 1998
  • This paper present a variety fault problem brought out with the multifunctional Battery Energy Storage System [MBESS] expected to be practical in the short future interconnected to power distribution system. Multifunctional BESS model and interconnection model to power system is simply configured, the problems of protection coordination and operation is studied. A line fault in the power distribution system are discussed such as line to ground and three phase fault in order to show the impact on power utilities, demand-side and BESS-side. In order to simulate a variable transient phenomenon due to 2 the BESS interconnection operation to power distribution system, in this paper, PSCAD/EMTDC simulation tools is used.

  • PDF

A Cascaded D-STATCOM Integrated with a Distribution Transformer for Medium-voltage Reactive Power Compensation

  • Lei, Ertao;Yin, Xianggen;Chen, Yu;Lai, Jinmu
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.522-532
    • /
    • 2017
  • This paper presents a novel integrated structure for a cascaded distribution static compensator (D-STATCOM) and distribution transformer for medium-voltage reactive power compensation. The cascaded multilevel converter is connected to a system via a group of special designed taps on the primary windings of the Dyn11 connection distribution transformer. The three-phase winding taps are symmetrically arranged and the connection point voltage can be decreased to half of the line-to-line voltage at most. Thus, the voltage stress for the D-STATCOM is reduced and a compromise between the voltage rating and the current rating can be achieved. The spare capacity of the distribution transformer can also be fully used. The working mechanism is explained in detail and a modified control strategy is proposed for reactive power compensation. Finally, both simulation and scaled-down prototype experimental results are provided to verify the feasibility and effectiveness of the proposed connection structure and control strategy.

Configuration of a Module for Monitoring Voltages Between Power Lines and Hull Onboard Vessels Based on the Vector Diagram at 3 Phase Ungrounded Power Distribution System (비접지 선박 3상 배전선로의 대지전압 벡터 모니터링 장치의 구성)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1111-1116
    • /
    • 2011
  • Power distribution systems onboard vessels are typically configured without any live line connected to hulls for earthing purpose, where the line to hull voltages are affected and deformed depending on the impedances consisting of insulation resistances and distributed capacitances between power lines and hull. An insulation fault at power lines causes the line to hull voltages to increase to a higher level which brings more possibilities to electric shock and deterioration of insulation material. This study focuses on how to configure a module which enables to continuously monitor the voltages between power line and hull based on the vector diagram by analyzing the neutral point of 3 phase voltages and the algorithm for plotting method on the PC monitors.

Analysis on the Operation Characteristics of Induction Motor Operated by Asymmetric Unbalanced Voltage (비대칭 불평형 전압 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Sohn, Hong-Kwan;Jeong, Jong-Ho;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.58-64
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Voltage unbalance is a condition in a polyphase system in which the rms values of the line-to-line voltages or the phase angles between consecutive line-to-line voltages, are not all equal. Slight voltage unbalance generates a disproportionately high current unbalance at the motor stator winding. This paper presents a scheme on operation states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

Applicability Comparison of Transmission Line Parameter Extraction Methods for Busbar Distribution Systems

  • Hasirci, Zeynep;Cavdar, Ismail Hakki;Ozturk, Mehmet
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.586-593
    • /
    • 2017
  • Modeling busbar distribution system as a transmission line is an important subject of power line communication in the smart grid concept. This requires extraction of busbar RLGC parameters, accurately. In this study, a comparison is made between conventional and modified method for the aspect of optimum RLGC parameters extraction in the 1 MHz to 50 MHz frequency band. The usefulness of these methods is shown both in time and frequency-domain analysis. The frequency-domain analyzes show that the inherent power of modified method can eliminate the errors especially due to the discontinuities arise in conventional method. This makes the modeling approach of modified method more advantageous for the busbars due to its robustness against disturbances in the S-parameters measurements which cannot be eliminated with the calibration procedure. On the other hand, time-domain simulations show that the transmission line representation of the modified method is closer to physical reality by handling causality issues.

A Diagnostic Technique for Power Distribution Line Facilities by the Corona Detector (코로나 검출기를 이용한 배전설비 진단기법)

  • Cho, Yong-Sang;Song, Gyu-So;Choi, Yu-Seong;Park, Tae-Seong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.588-593
    • /
    • 2011
  • The airpollutant may accelerate degradation of power line facilities, and may reduce the life of the electric facilities. In case of korea, there are a tendency that the density of air pollution may be increased by industrial development. while lack of research activity and establishment of a countermeasure on this issue. Recently the occurrence of electricity failure have been reduced on the power transmission and distribution lines. but the occurrence of electricity failure by insulator itself has been increased. It means that we should have develop more clear technique for detection of the wrong insulator. In this study to provide a method for detection of the insulator failure or effective management of the troubled insulator, we analyze the chemical composition of the insulator which used on power distribution line at the sea side locations. To define the relation between insulation and corona intensity, we design and develop an corona detector. We define the variation of insulation by pollution changes on the insulator and verify quantitative relation between corona and insulations using the corona detector.

The Study on the Impulse Characteristic of Secondary Arresters in Power Distribution System (가공 배전선로 중성선과 가공지선 겸용시의 임펄스 특성 연구)

  • Kang, Moon-Ho;Kim, Dong-Myeong;Song, Il-Keun;Chun, Sung-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.297-299
    • /
    • 2004
  • In multi-ground distribution system, overhead ground wire and neutral wire are parallel connected to offer the electrical power energy and protect damage of lightning strokes. Therefore a case where the two wires become single wire, the power company can get the benefit such as installation cost saving and line fault protection by simplify of distribution line. In this paper we describe the result of impulse test in both system ; one is the present power system the other is unified power system parallel connected overhead ground wire and neutral wire. As a result of this impulse test, the present power system get lower impulse voltage than the unified power system.

  • PDF

A Study on Fire Investigation Technique For Single Line to Ground Faults in Distribution Line Using EMTP Simulation (EMTP 시뮬레이션을 통한 배전선로의 1선 지락 사고시 화재 조사 기법에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hie Sik;Lee, Hoon Gi;Cho, Yong Sun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • Approximately 20% of the total fire is electrical fire, and electrical energy is a potential source of heat. Large-scale fault currents that occur during a line ground fault flow into electric utility poles, electric power equipment, or electric appliances of the customer, and cause simultaneous electrical fire. In this paper, we investigated the possibility of fire through the change of fault current flowing in faulty and sound feeder in case of 1 line ground fault in 22.9 kV distribution line. We propose a fire investigation analysis method for simultaneous multiple electrical fire such as evidence analysis method, and fault current occurrence confirmation method in case of fire accident by analyzing the fault current occurring in the ground fault in the distribution line using EMTP, electric power system analysis program.

Circulating Current Reduction Method during Distribution Network Dynamic Reconfiguration using Active Phase Controller (능동위상제어기를 이용한 배전선로 자율 재구성 시 순환전류 감소 기법)

  • Kim, Soo-Yeon;Jeong, Da-Woom;Park, Sung-Jun;Kim, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2020
  • In recent years, the demand for the distribution of energy resource has been increasing. However, the output power is limited by the stability of the distribution network. This study proposes an active distribution network that can reconfigure the distribution line using an active phase controller. The conventional distribution network has a fixed structure, whereas the proposed active distribution network has a variable structure. Therefore, the active distribution network can increase the output power of the distribution energy resource and reduce the overload of distribution line facilities. The active phase controller has two operation modes to minimize the circulating current during dynamic reconfiguration. In this study, the voltage and current control algorithms are proposed for the active phase controller. The proposed method for the active phase controller is simulated via PSIM simulation.

An Auto-drawing Algorithm for the Single Line Diagram of Distribution Systems (배전선로 회선별단선도 자동생성 알고리즘)

  • Son, Ju-Hwan;Lim, Seong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.854-859
    • /
    • 2010
  • Distribution Automation System(DAS) is designed to improve operational efficiency by acquisition and control of remote data using its components such as central computation units, communication network and feeder remote terminal units. A conventional human machine interface of the DAS adopts a schematic diagram which is made by drawing power equipments on the geographic information system map. The single line diagram is more useful than the schematic diagram for the main tasks of distribution system operation such as protective relay coordination, service restoration and loss minimization. Since the configuration of the distribution line is changed according to the relocation of the open tie switches, the auto-drawing algorithm based on the connection between the sections and the switches is an essential technique. This paper proposes a new auto-drawing algorithm for a single line diagram of distribution systems based on tertiary tree and collision avoidance method. The feasibility of the proposed algorithm has been testified for various cases using practical distribution system with 12 feeders.