• Title/Summary/Keyword: power conversion system

Search Result 1,263, Processing Time 0.038 seconds

Study on Operating Characteristics of a Water Cooling System for cooling Power Conversion Semiconductors (전력변환반도체 냉각용 수냉각장치의 작동특성에 관한 연구)

  • Ryoo, Seong-Ryoul;Kim, Sung-Dae;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.249-256
    • /
    • 2009
  • The cooling technology of power conversion semiconductors in the propulsion system for the HEMU(High Electrical Multi Unit) are applied in water cooling method and phase change method such as the immersed type and the heat pipe type. This research designs and manufactures the water cooling system that could cool about heat load Q=2kW and performance tests to apply it by an electric power conversion semiconductors(IGBT) cooling technology. Experimental condition made change of a flow rate, an air velocity and a heat load to confirm operation characteristics of water cooling device, and when is heat load 2kW, air velocity 20 m/s, and water flow rate 7kg/s, it is about $80^{\circ}C$ to temperature of cooling plate.

  • PDF

DC Link Switch Loss Analyses according to Circuit Structures of the Boost Converter for Photovoltaic Generation System (태양광 발전 시스템을 위한 부스트 컨버터의 회로 구성에 따른 직류측 스위치 손실 분석)

  • Lee, Seung-Yo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.192-198
    • /
    • 2012
  • Switch losses directly affect the efficiency of power conversion systems and those have big differences according to the power consumed by load systems and the structures of power conversion circuits. In this paper, analyses for switch losses in DC link converter are performed based on the circuit structures of the DC/DC converter in photovoltaic generation system whose output power is varied according to the amount of solar radiation, temperature and partial shade on the solar modules. Boost converter is adopted as a DC link converter topology of the photovoltaic generation system and the loss analyses for the switches used in the boost converters are performed according to the circuit structures. Analyses like the things performed in this paper will be a prerequisite to designing the photovoltaic generation system whose output power is changed according to the environmental variations.

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

Design of A High-Speed Current-Mode Analog-to-Digital Converter (고속 전류 구동 Analog-to-digital 변환기의 설계)

  • 조열호;손한웅;백준현;민병무;김수원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.42-48
    • /
    • 1994
  • In this paper, a low power and high speed flash Analog-to-Digital Converter using current-mode concept is proposed. Current-mode approach offers a number of advantages over conventional voltage-mode approach, such as lower power consumption small chip area improved accuracy etc. Rescently this concept was applied to algorithmic A/D Converter. But, its conversion speed is limited to medium speed. Consequently this converter is not applicable to the high speed signal processing system. This ADC is fabricated in 1.2um double metal CMOS standard process. This ADC's conversion time is measured to be 7MHz, and power consumption is 2.0mW, and differential nonlinearity is less than 1.14LSB and total harmonic distortion is -50dB. The active area of analog chip is about 350 x 550u$m^2$. The proposed ADC seems suitable for a single chip design of digital signal processing system required high conversion speed, high resolution small chip area and low power consumption.

  • PDF

A Power Losses Analysis of AC Railway Power Feeding Network using Adaptive Voltage Control (능동형 전압제어를 통한 교류 전기철도 급전망에 대한 전력손실 분석)

  • Jung, Hosung;Kim, Hyungchul;Shin, Seongkuen;Kim, Jinho;Yoon, Kiyong;Cho, Yonghyeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1621-1627
    • /
    • 2013
  • This paper compares power losses between voltage controlled before and after using power conversion device in AC feeding system. For this purpose we present voltage control procedures and criteria and model high speed line and train using PSCAD/EMTDC to compare power losses in various feeding condition. Power losses of the simulation result in power control before and after in single point feeding system was reduced maximum 0.37 MW(23.8 %) and average 0.23 MW(20.5 %) when one vehicle load operates maximum load condition. When three vehicles operate maximum load condition in one feeder section, power losses after voltage control was reduced 1.03 MW(49.5%) compared to before voltage control. And, power loss of parallel feeding system is reduced the average 0.08 MW(7.2 %) compared to the single feeding system. In conclusion, adaptive voltage control method using power conversion device can reduce power losses compared with existing method.

Response Characteristics Effectiveness of Power Converter According to Using of Error Compensator for PV Power System (태양광 전력설비를 위한 오차 보상기 사용의 전력변환기기에 대한 응답특성의 효과 검증)

  • Kim, Dong-Eun;Lee, Hyun-Jae;Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1388-1394
    • /
    • 2018
  • In this paper, the improvement of the control response by using the error compensator to improve the stability of the control in the power conversion system is verified. Typically a closed loop control method is used to improve the control response characteristics in a traditional power conversion system and this is accomplished by generating a PWM waveform. In this paper, the newly constructed Type3 compensator to overcome the existing such as PI controller or Type2 compensator has been developed to improve the control stability of these closed loop control systems and the effectiveness of the use of error compensation devices was verified by presenting technique to improve stability and select its parameters by expanding the range of phase gains. Stability improvements are shown by the extension of the phase gain range and parameter selection techniques and the effects of using the error compensation device are verified accordingly.

DC-DC Converter for Integrated Voltage Control Method (전압 적분 제어법에 의한 DC-DC 컨버터)

  • 이현우;서기영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1590-1597
    • /
    • 1993
  • Power conversion system generally requires bidirectional converter. A storage energy of reactor is suppressed by regeneration of surplus electic energy in converter to power source. When an electric isolation in the power conversion system is required. the most suitable position for the isolation is the DC-Link part. A transformer in the DC part is minimized because of high repetition frequency. This paper proposes that power conversion system becomes bidirectional DC-DC converter with electric isolation by intergrated voltage control method. It is intergrated voltage control that makes system construciton simple, has control errow little quantity ans gets output response Quick. And the power-switches which should be operated is selected automatically without a detection of the current-direction.

  • PDF

Neural Network Controller of A Grid-Connected Wind Energy Conversion System for Maximum Power Extraction (계통연계 풍력발전시스템의 최대출력제어를 위한 신경회로망 제어기에 관한 연구)

  • Ro, Kyoung-Soo;Choo, Yeon-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • This paper presents a neural network controller of a grid-connected wind energy conversion system for extracting maximum power from wind and a power controller to transfer the maximum power extracted into a utility grid. It discusses the modeling and simulation of the wind energy conversion system with the controllers, which consists of an induction generator, a transformer, a link of a rectifier, and an inverter. The paper describes tile drive train model, induction generator model and grid-interface model for dynamics analysis. Maximum power extraction is achieved by controlling the pitch angle of the rotor blades by a neural network controller. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation. The simulation results performed on MATLAB show the variation of the generator torque, the generator rotor speed, the pitch angle, and real/reactive power injected into the grid, etc. Based on the simulation results, the effectiveness of the proposed controllers is verified.

Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator (석탄순환형 연료전지 모사시스템용 석탄전환율 측정 및 분석법개발에 관한 연구)

  • Lee, Sangcho;Kim, Chihwan;Hwang, Munkyeong;kim, Minseong;Kim, Kyubo;Jeon, Chunghwan;Song, Juhun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • There is a new power generation system such as direct coal fuel cell (DCFC) with a solid oxide electrolyte operated at relatively high temperature. In the system, it is of great importance to feed coal continuously into anodic electrode surface for its better contact, otherwise it would reduce electrochemical conversion of coal. For that purpose, it is required to improve the electrochemical conversion efficiency by using either rigorous mixing condition such as fluidized bed condition or just by recirculating coal particle itself successively into the reaction zone of the system. In this preliminary study, we followed the second approach to investigate how significantly particle recycle would affect the coal conversion efficiency. As a first phase, coal conversion was analyzed and evaluated from the thermochemical reaction of carbon with air under particle recirculating condition. The coal conversion efficiency was obtained from raw data measured by two different techniques. Effects of temperature and fuel properties on the coal conversion are specifically examined from the thermochemical reaction.

Single-Inductor, Multiple-Input-Single-Output Converter Based Energy Mixer for Power Packet Distribution System

  • Reza, C.M.F.S.;Lu, Dylan Dah-Chuan;Qin, Ling;Qi, Jian
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1479-1488
    • /
    • 2018
  • Power packet (PP) distribution system distributes power to different loads that share the same distribution cable in a packetized form. When compared with conventional power systems, a PP distribution system (PPDS) can reduce standby power, eliminate Point-of-Load (PoL) power conversion, and intelligently control the load demand from the source side. Due to the absence of PoL conversion, when multiple power sources at different voltage levels and conditioning requirements jointly send power to various loads at different voltage ratings, the generated voltage has an irregular shape. A large filter at each of the load sides is required to reduce such a large voltage ripple. In this paper, a single-inductor, multiple-input-single-output converter structure based multiple-energy-source mixer is proposed. It combines PP generation, maximum power point tracking (MPPT) of renewable energy sources (RESs) and filtering at the source side. To demonstrate the possible renewable energy integration, a PV panel is used as a power source together with other constant voltage sources. The PV power is approximately tracked using the constant voltage method and it is used for each of the PP generations. The proposed PP distribution system is experimentally verified and it is shown that a conventional PI controller is sufficient for stable system operation.