• Title/Summary/Keyword: power conversion system

Search Result 1,264, Processing Time 0.039 seconds

The Conversion of Narrative Strategy: from "An Outpost of Progress" to Heart of Darkness (서술 전략의 전환-「진보의 전초기지」에서 『어둠의 핵심』으로)

  • Lee, Man Sik
    • Journal of English Language & Literature
    • /
    • v.57 no.4
    • /
    • pp.625-649
    • /
    • 2011
  • Even though "An Outpost of Progress" and Heart of Darkness were based upon Joseph Conrad the sailor's same experience in Congo Free State, their narrative strategies are quite different. The realistic representation of "An Outpost of Progress," with which Conrad was not satisfied at all, was converted into the modernistic narrative strategy of Heart of Darkness so that the sympathetic power of the story should be improved. The conservative value system of realism is expressed by the omniscient author in "An Outpost of Progress," whereas the frame narrator of Heart of Darkness is proved to be an unreliable one whose norms and behavior are not in accordance with the implied author. The glorious history of the British Empire, which was proudly presented by the frame narrator at the beginning of Heart of Darkness, was strongly opposed by Marlow, another narrator, who said that the British Empire had been "one of the dark places of the earth" when ruled by the Roman Empire. The feeling of the frame narrator was uneasily changed into the gloomy mood when he described the Thames as the flow which "seemed to lead into the heart of an immense darkness" at the end of Heart of Darkness. Similar to the straightforward narrative strategy of representation in "An Outpost of Progress," the realistic approach of Part I in Heart of Darkness is considered by Conrad as insufficient to reveal the darkest truth of imperialism, which was declared by Kurtz as "The Horror! The Horror!" Thus Conrad uses the Chinese-box structure, in which Kurtz' episode is enveloped by Marlow's tale which is enclosed by the frame narrator's story, in order to penetrate into the mind of ordinary readers in the novelist's age of New Colonialism, while attacking the ideology itself of imperialism instead of critisizing its inefficiency and individualism.

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.

Analysis of the Effect of Alternating Current Ripple on Electrical State of Health Degradation of 21700 Lithium-ion Battery (교류 리플이 21700 리튬 이온 배터리의 전기적 건강 상태 열화에 미치는 영향 분석)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.477-485
    • /
    • 2023
  • In this paper, the effect of AC ripple on the lifetime of lithium-ion batteries is experimentally analyzed. Bidirectional power conversion system(PCS) is used to increase the efficiency of energy storage systems (ESS). When connected to the grid, a current ripple with a frequency twice the grid frequency is applied to the battery due to its structure. Therefore, to analyze the effect of AC ripple on Li-ion battery aging, cycle life test are performed by applying charge/discharge profiles of DC current and DC+AC current ripple specifications. Based on the experimental results, direct current internal resistance (DCIR), incremental capacitance (IC), and surface temperature were analyzed. As a result, it is confirmed that AC ripple does not directly affect degradation and that battery degradation slows down after a certain cycle. These results can serve as a guideline for optimizing filters to reduce ripple on the battery side in applications where AC ripple occurs.

MPSoC Design Space Exploration Based on Static Analysis of Process Network Model (프로세스 네트워크 모델의 정적 분석에 기반을 둔 다중 프로세서 시스템 온 칩 설계 공간 탐색)

  • Ahn, Yong-Jin;Choi, Ki-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.7-16
    • /
    • 2007
  • In this paper, we introduce a new design environment for efficient multiprocessor system-on-chip design space exploration. The design environment takes a process network model as input system specification. The process network model has been widely used for modeling signal processing applications because of its excellent modeling power. However, it has limitation in predictability, which could cause severe problem for real time systems. This paper proposes a new approach that enables static analysis of a process network model by converting it to a hierarchical synchronous dataflow model. For efficient design space exploration in the early design step, mapping application to target architectures has been a crucial part for finding better solution. In this paper, we propose an efficient mapping algorithm. Our mapping algorithm supports both single bus architecture and multiple bus architecture. In the experiments, we show that the automatic conversion approach of the process network model for static analysis is performed successfully for several signal processing applications, and show the effectiveness of our mapping algorithm by comparing it with previous approaches.

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

A Wireless Video Streaming System for TV White Space Applications (TV 유휴대역 응용을 위한 무선 영상전송 시스템)

  • Park, Hyeongyeol;Ko, Inchang;Park, Hyungchul;Shin, Hyunchol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.381-388
    • /
    • 2015
  • In this paper, a wireless video streaming system is designed and implemented for TV white space applications. It consists of a RF transceiver module, a digital modem, a camera, and a LCD screen. A VGA resolution video is captured by a camera, modulated by modem, and transmitted by RF transceiver module, and finally displayed at a destination 2.6-inch LCD screen. The RF transceiver is based on direct-conversion architecture. Image leakage is improved by low pass filtering LO, which successfully covers the TVWS. Also, DC offset problem is solved by current steering techniques which control common mode level at DAC output node. The output power of the transmitter and the minimum sensitivity of the receiver is +10 dBm and -82 dBm, respectively. The channel bandwidth is tunable among 6, 7 and 8 MHz according to regulations and standards. Digital modem is realized in Kintex-7 FPGA. Data rate is 9 Mbps based on QPSK and 512ch OFDM. A VGA video is successfully streamed through the air by using the developed TV white-space RF communication module.

Hydrogen Production for PEMFC Application in Plasma Reforming System (PEMFC용 플라즈마 개질 시스템의 수소 생산)

  • Yang, Yoon Cheol;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1002-1007
    • /
    • 2008
  • The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

INNOVATIVE CONCEPT FOR AN ULTRA-SMALL NUCLEAR THERMAL ROCKET UTILIZING A NEW MODERATED REACTOR

  • NAM, SEUNG HYUN;VENNERI, PAOLO;KIM, YONGHEE;LEE, JEONG IK;CHANG, SOON HEUNG;JEONG, YONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.678-699
    • /
    • 2015
  • Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.

Incident Angle Dependence of Quantum Efficiency in c-Si Solar Cell or a-Si Thin Film Solar Cell in BIPV System (광 입사각이 BIPV에 적용되는 단결정 또는 비정질 실리콘 태양전지의 양자효율에 미치는 영향)

  • Kang, Jeong-Wook;Son, Chan-Hee;Cho, Guang-Sup;Yoo, Jin-Hyuk;Kim, Joung-Sik;Park, Chang-Kyun;Cha, Sung-Duk;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • The conversion efficiency of solar cells depending on incident angle of light is important for building-integrated photovoltaics (BIPV) applications. The quantum efficiency is the ratio of the number of charge carriers collected by the solar cell to the number of photons of a given energy shining on the solar cell. The analysis of angle dependence of quantum efficiencies give more information upon the variation of power output of a solar cell by the incident angle of light. The variations in power output of solar cells with increasing angle of incidence is different for the type of cell structures. In this study we present the results of the quantum efficiency measurement of single-crystalline silicon solar cells and a-Si:H thin-film solar cells with the angle of incidence of light. As a result, as the angle of incidence increases in single-crystalline silicon solar cells, quantum efficiency at all wavelength (300~1,100 nm) of light were reduced. But in case of a-Si:H thin-film solar cells, quantum efficiency was increased or maintained at the angle of incidence from 0 degree to about 40 degrees and dramatically decrease at more than 40 degrees in the range of visible light. This results of quantum efficiency with increasing incident angle were caused by haze and interference effects in thin-film structure. Thus, the structural optimization considering incident angle dependence of solar cells is expected to benefit BIPV.

Special quality research about action output waveform change by gap (1.0mm and 1.6mm)difference of skin excessive expense $CO_2$ Laser (피부과용$CO_2$ 레이저의 공극(1.0mm및 1.6mm)차이에 따른 동작출력 파형변화에 관한 특성 연구)

  • Kim, Whi-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • Laser wave length can have evaporation effect by absorption because outer skin or tissue of focus is consisted of water almost though absorption of water occurs more than 90% almost in formation thickness of very thin floor. Can operate outer skin, steam by floor and correct incision of formation is available. Suture surgical operation is available to vein or lymph system and surgical operation region can dry and see as eye and radish bleeding surgical operation is available. Specially, stability of tube both end output about pulse by weight very, this research can cause various curative effect because can reduce bulk and control easily current wave style of medical laser using electric power conversion device of high frequency way. If introduce ZVS (Zero Voltage Switching) or ZVZCS (Zero Voltage and Zero Current Switching), is more profitable because can reduce switching damage. Because electric power department of proposed medical laser can do stable soft-switching in wide subordinate extent introducing ZVZCS technique by the first help and control department composes microcontroller, output current waveform user have free form make Result that experiment because design and manufacture, brought result that improve of 20% than existing equipment, and will be bought to get into superior result if supplement as systematic late.

  • PDF