DOI QR코드

DOI QR Code

Analysis of the Effect of Alternating Current Ripple on Electrical State of Health Degradation of 21700 Lithium-ion Battery

교류 리플이 21700 리튬 이온 배터리의 전기적 건강 상태 열화에 미치는 영향 분석

  • Bongwoo Kwak (Dept. of of Automotive Materials & Components R&D Group, Korea Institute of Industrial Technology)
  • Received : 2023.11.24
  • Accepted : 2023.12.13
  • Published : 2023.12.31

Abstract

In this paper, the effect of AC ripple on the lifetime of lithium-ion batteries is experimentally analyzed. Bidirectional power conversion system(PCS) is used to increase the efficiency of energy storage systems (ESS). When connected to the grid, a current ripple with a frequency twice the grid frequency is applied to the battery due to its structure. Therefore, to analyze the effect of AC ripple on Li-ion battery aging, cycle life test are performed by applying charge/discharge profiles of DC current and DC+AC current ripple specifications. Based on the experimental results, direct current internal resistance (DCIR), incremental capacitance (IC), and surface temperature were analyzed. As a result, it is confirmed that AC ripple does not directly affect degradation and that battery degradation slows down after a certain cycle. These results can serve as a guideline for optimizing filters to reduce ripple on the battery side in applications where AC ripple occurs.

본 논문에서는 AC 리플이 리튬 이온 배터리의 수명에 미치는 영향을 실험적으로 분석한다. 에너지 저장 시스템(ESS)의 이용 효율을 높이기 위해 양방향 전력변환시스템(PCS)이 사용되며, 계통 연계 시 구조상 계통 주파수의 2배의 주파수를 갖는 전류 리플이 배터리에 인가되게 된다. 따라서, AC 리플이 Li-ion 배터리의 노화에 미치는 영향에 대해 분석하기 위해 DC 및 DC+AC 리플 사양의 충/방전 프로파일을 적용하여 노화 실험이 수행되었다. 실험 결과를 바탕으로 직류 내부 저항(DCIR), 증분 용량(IC), 표면 온도를 분석하였다. 결과적으로 AC 리플이 노화에 직접적으로 영향을 미치지 않으며 특정 주기 이 후 배터리 노화가 둔화되는 것을 확인하였다. 이러한 결과는 AC 리플이 발생하는 어플리케이션에서 전류 리플을 줄이기 위해 적용된 필터를 개선하는 데 도움이 될 수 있다.

Keywords

Acknowledgement

This study has been conducted with the support of the Korea Institute of Industrial Technology as "Development of core technologies of AI based self-power generation and charging for next-generation mobility (KITECH EH-23-0013)".

References

  1. M. H. K. Tushar, A. W. Zeineddine and C. Assi, "Demand-Side Management by Regulating Charging and Discharging of the EV, ESS, and Utilizing Renewable Energy," IEEE Trans, on Industrial Informatics, vol.14, no.1, pp.117-126, 2018. DOI: 10.1109/TII.2017.2755465
  2. M. H. K. Tushar, A. W. Zeineddine and C. Assi, "Distributed real-time electricity allocation mechanism for large residential microgrid," IEEE Trans, Smart Grid, vol.6, no.3, pp.1353-1363, 2015. DOI: 10.1109/TSG.2014.2375671
  3. Q. Huang, R. Yu, Q. Ma and A. A. Huang, "Predictive ZVS Control With Improved ZVS Time Margin and Limited Variable Frequency Range for a 99% Efficient, 130-W/in3 MHz GaN Totem-Pole PFC Rectifier," IEEE Trnas. On Power Electroincs, vol.33, no.7, pp.7079-7091, 2019. DOI: 10.1109/TPEL.2018.2877443
  4. U. R. Prasanna, A. K. Singh and K. Rajashekara, "Novel Bidirectional Single-phase Single-Stage Isolated AC-DC Converter With PFC for Charging of Electric Vehicles," IEEE Trans. on Transportation Electrification, vol.3, no.3, pp.536-544, 2017. DOI: 10.1109/TTE.2017.2691327
  5. S. Bala, T. Tengner, P. Rosenfeld and F. Delince, "The Effect of Low Frequency Current Ripple on the Performance of a Lithium Iron Phosphate (LFP) Battery Energy Storage System," In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), pp.3485-3492, 2012. DOI: 10.1109/ECCE.2012.6342318
  6. M. Uno and K. Tanaka, "Influence of high-frequency charge-discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells," IEEE Trans. on Vehicular Technology, vol.60, pp.1505-1515, 2011. DOI: 10.1109/TVT.2011.2127500
  7. I. Puranik, L. Zhang and J. Qin, "Impact of Low-Frequency Ripple on Lifetime of Battery in MMC-based Battery Storage Systems," In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), pp.2748-2752, 2018. DOI: 10.1109/ECCE.2018.8558061
  8. K. Uddin, A. D. Moore, A. Barai and J. Marco, "The effects of high frequency current ripple on electric vehicle battery performance," Applied Energy, vol.178, pp.142-154, 2016. DOI: 10.1016/j.apenergy.2016.06.033
  9. F. Chang, F. Roemer and M. Lienkamp, "Influence of Current Ripples in Cascaded Multilevel Topologies on the Aging of Lithium Batteries," IEEE Trans. on Power Elec., vol.35, no.11, pp.11879-11890, 2020. DOI: 10.1109/TPEL.2020.2989145
  10. M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev and R. J. Staniewicz, "Aging mechanism in Li ion cells and calendar life predictions," Journal of Power Sources, vol.97-98, pp.13-21, 2001. DOI: 10.1016/S0378-7753(01)00722-4
  11. K. Uddin, L Somerville, A. Barai, M. Lain, T. R. Jennings and J. Marco, "The impact of high-frequency-high-current perturbations on film formation at the negative electrode-electrolyte interface," Electrochimica Acta, vol.233, pp.1-12, 2017. DOI: 10.1016/j.electacta.2017.03.020
  12. J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Meherns, C. Vogler and A. Hammouche, "Ageing mechanisms in lithium-ion batteries," Journal of Power Sources, vol.147, pp.269-281, 2005. DOI: 10.1016/j.jpowsour.2005.01.006
  13. Y. S. Kang, S. Y. Park, K. Ito, Y. Kudo, Y. W. Shin, D. Y. Kim, D. H. Seo, S. J. Kim, J. H. Park, S. G. Doo, M. Koh, J. A. Seo and K. J. Park, "Revealing the structural degradation mechanism of the Ni-rich cathode surface:How thick is the surface?," Journal of Power Sources, vol.490, pp.1-7, 2021. DOI: 10.1016/j.jpowsour.2021.229542
  14. A. Ghassemi, P. C. Banerjee, A. F. Hollenkamp, Z. Zhang and B. Bahrani, "Effects of alternation current on Li-ion battery performance: Monitoring degradative processes with in-situ characterization techniques," Applied Energy, vol.284, pp.1-16, 2021. DOI: 10.1016/j.apenergy.2020.116192
  15. M. Abdel-Monem, K. Trad, N. Omar, O. Hegazy, P. Van den Bossch, and J. Van Mierlo,"Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries," Energy, vol.120, pp.179-191, 2017. DOI: 10.1016/j.energy.2016.12.110
  16. P. F. Carols, K. Uddin, G. H. Chouchelamane, W.D. Widanage and J. Marco," A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems," Journal Power Sources, vol.360, pp.301-318, 2017. DOI: 10.1016/j.jpowsour.2017.03.042
  17. J. B. Jorcin, M. E. Orazem, N. Pebere and B. Tribollet, "CPE analysis by local electrochemical impedance spectroscopy," Electrochim Acta, vol.51, pp.1473-1479, 2006. DOI: 10.1016/j.electacta.2005.02.128
  18. A. Barai, K. Uddin, M. Dubarry, L. Somerville, A. McGordon, P. Jennings and I. Bloom, "A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells," Progress in Energy and Combustion Science, vol.72, pp.1-31, 2019. DOI 10.1016/j.pecs.2019.01.001