• Title/Summary/Keyword: power consumption prediction

Search Result 168, Processing Time 0.019 seconds

New Drowsy Cashing Method by Using Way-Line Prediction Unit for Low Power Cache (저전력 캐쉬를 위한 웨이-라인 예측 유닛을 이용한 새로운 드로시 캐싱 기법)

  • Lee, Jung-Hoon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.74-79
    • /
    • 2011
  • The goal of this research is to reduce dynamic and static power consumption for a low power cache system. The proposed cache can achieve a low power consumption by using a drowsy and a way prediction mechanism. For reducing the static power, the drowsy technique is used at 4-way set associative cache. And for reducing the dynamic energy, one among four ways is selectively accessed on the basis of information in the Way-Line Prediction Unit (WLPU). This prediction mechanism does not introduce any additional delay though prediction misses are occurred. The WLPU can effectively reduce the performance overhead of the conventional drowsy caching by waking only a drowsy cache line and one way in advance. Our results show that the proposed cache can reduce the power consumption by about 40% compared with the 4-way drowsy cache.

  • PDF

A Study on Prediction of Power Consumption Rate for Heating and Cooling load of School Building in Changwon City (창원시 학교 건축물의 냉난방부하에 대한 전력 소비량 추정에 관한 연구)

  • Park, Hyo-Seok;Choi, Jeong-Min;Cho, Sung-Woo
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.11 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • This study was carried out in order to establish the estimation equation for school power consumption using regression analysis based on collected power consumption for two years of weather data and schools are located in Central Changwon and Masan district in Changwon city. (1) The power consumption estimation equation for Heating and cooling is calculated using power consumption per unit volume, the difference between actual power consumption and results of estimation equations is 4.1%. (2) The power consumption estimation equation for heating load is showed 2.6% difference compared to actual power consumption in Central Changwon and is expressed 2.9% difference compared to that in Masan district. Therefore, the power consumption prediction for each school using the power consumption estimation equation is possible. (3) The power consumption estimation equation for cooling load is showed 8.0% difference compared to actual power consumption in Central Changwon and is expressed 2.9% compared to that in Masan district. As the power consumption estimation equation for cooling load is expressed difference compared to heating load, it needs to investigate influence for cooling load.

Power Consumption Forecasting Scheme for Educational Institutions Based on Analysis of Similar Time Series Data (유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법)

  • Moon, Jihoon;Park, Jinwoong;Han, Sanghoon;Hwang, Eenjun
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.954-965
    • /
    • 2017
  • A stable power supply is very important for the maintenance and operation of the power infrastructure. Accurate power consumption prediction is therefore needed. In particular, a university campus is an institution with one of the highest power consumptions and tends to have a wide variation of electrical load depending on time and environment. For this reason, a model that can accurately predict power consumption is required for the effective operation of the power system. The disadvantage of the existing time series prediction technique is that the prediction performance is greatly degraded because the width of the prediction interval increases as the difference between the learning time and the prediction time increases. In this paper, we first classify power data with similar time series patterns considering the date, day of the week, holiday, and semester. Next, each ARIMA model is constructed based on the classified data set and a daily power consumption forecasting method of the university campus is proposed through the time series cross-validation of the predicted time. In order to evaluate the accuracy of the prediction, we confirmed the validity of the proposed method by applying performance indicators.

A Study on the Prediction of Power Consumption in the Air-Conditioning System by Using the Gaussian Process (정규 확률과정을 사용한 공조 시스템의 전력 소모량 예측에 관한 연구)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.64-72
    • /
    • 2016
  • In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon's sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.

A Study of the Performance Prediction Models of Mobile Graphics Processing Units

  • Kim, Cheong Ghil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2019
  • Currently mobile services are on the verge of full commercialization ahead of 5G mobile communication (5G). The first goal could be to preempt the 5G market through realistic media services utilizing VR (Virtual Reality) and AR (Augmented Reality) technologies that users can most easily experience. Basically this movement is based on the advanced development of smart devices and high quality graphics processing computing power of mobile application processors. Accordingly, the importance of mobile GPUs is emerging and the most concern issue becomes a model for predicting the power and performance for smooth operation of high quality mobile contents. In many cases, the performance of mobile GPUs has been introduced in terms of power consumption of mobile GPUs using dynamic voltage and frequency scaling and throttling functions for power consumption and heat management. This paper introduces several studies of mobile GPU performance prediction model with user-friendly methods not like conventional power centric performance prediction models.

Power Consumption Prediction Scheme Based on Deep Learning for Powerline Communication Systems (전력선통신 시스템을 위한 딥 러닝 기반 전력량 예측 기법)

  • Lee, Dong Gu;Kim, Soo Hyun;Jung, Ho Chul;Sun, Young Ghyu;Sim, Issac;Hwang, Yu Min;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.822-828
    • /
    • 2018
  • Recently, energy issues such as massive blackout due to increase in power consumption have been emerged, and it is necessary to improve the accuracy of prediction of power consumption as a solution for these problems. In this study, we investigate the difference between the actual power consumption and the predicted power consumption through the deep learning- based power consumption forecasting experiment, and the possibility of adjusting the power reserve ratio. In this paper, the prediction of the power consumption based on the deep learning can be used as a basis to reduce the power reserve ratio so as not to excessively produce extra power. The deep learning method used in this paper uses a learning model of long-short-term-memory (LSTM) structure that processes time series data. In the computer simulation, the generated power consumption data was learned, and the power consumption was predicted based on the learned model. We calculate the error between the actual and predicted power consumption amount, resulting in an error rate of 21.37%. Considering the recent power reserve ratio of 45.9%, it is possible to reduce the reserve ratio by 20% when applying the power consumption prediction algorithm proposed in this study.

Performance Improvement and Power Consumption Reduction of an Embedded RISC Core

  • Jung, Hong-Kyun;Jin, Xianzhe;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 2012
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of an embedded RISC core and a clock-gating algorithm with observability don’t care (ODC) operation to reduce the power consumption of the core. The branch prediction algorithm has a structure using a branch target buffer (BTB) and 4-way set associative cache that has a lower miss rate than a direct-mapped cache. Pseudo-least recently used (LRU) policy is used for reducing the number of LRU bits. The clock-gating algorithm reduces dynamic power consumption. As a result of estimation of the performance and the dynamic power, the performance of the OpenRISC core applied to the proposed architecture is improved about 29% and the dynamic power of the core with the Chartered 0.18 ${\mu}m$ technology library is reduced by 16%.

Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm (순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델)

  • Hyeon-Seok JEONG;Jong-Hyeok RYU;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network (엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석)

  • Lee, Chang-Yong;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.

Power Prediction of Mobile Processors based on Statistical Analysis of Performance Monitoring Events (성능 모니터링 이벤트들의 통계적 분석에 기반한 모바일 프로세서의 전력 예측)

  • Yun, Hee-Sung;Lee, Sang-Jeong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.469-477
    • /
    • 2009
  • In mobile systems, energy efficiency is critical to extend battery life. Therefore, power consumption should be taken into account to develop software in addition to performance, Efficient software design in power and performance is possible if accurate power prediction is accomplished during the execution of software, In this paper, power estimation model is developed using statistical analysis, The proposed model analyzes processor behavior Quantitatively using the data of performance monitoring events and power consumption collected by executing various benchmark programs, And then representative hardware events on power consumption are selected using hierarchical clustering, The power prediction model is established by regression analysis in which the selected events are independent variables and power is a response variable, The proposed model is applied to a PXA320 mobile processor based on Intel XScale architecture and shows average estimation error within 4% of the actual measured power consumption of the processor.