• Title/Summary/Keyword: power conditioning

Search Result 1,094, Processing Time 0.027 seconds

Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat (저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

A Study on the Economic Evaluation of Photovoltaic System in the Residential Building (주거용 건물의 태양광 발전시스템 경제성 평가에 관한 연구)

  • Choi, Jeong-Min;Ju, Jai-Wook;Kim, Dong-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.14-21
    • /
    • 2009
  • The demand and installation for photovoltaic system(namely, PV) has grown steadily in Korea. However, the PV system has a various economic viability according to the PV system characteristic variables such as inverter efficiency, miscellaneous power conditioning losses, azimuth and slope of PV array, PV tracking mode, and so on. The other variables are the monthly consumed electric energy and economic related factor such as initial cost, government subsidy, maintenance cost, inflation rate, energy cost escalation rate, discount rate, etc. Therefore, this study is to present economic evaluation of PV system with those concerned factors by calculating internal rate of return, year-to-positive cash flow and net present value indices.

Study on the effect of reducing consumption of domestic electric power by managing model energy mileage system in Busan (부산시 에너지마일리지제 시범운영을 통한 가정용 전력 소비절감 효과분석)

  • Lee, Eun-Ju;Pae, Min-Ho;Kim, Jae-Min;Song, Gook-Sup;Kwak, Ro-Yeul;Ok, Sung-Ae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.934-939
    • /
    • 2009
  • To promote citizen's involvement in the GHG(Green House Gas) reduction policy, Busan city administration adopted an pilot energy incentive system called 'energy mileage'. The energy mileage system was designed to make energy end-users motivated to reduce domestic electricity use by providing financial rewards. Through the course of the pilot period, 5,3330 householders volunteerly participated the pilot system. About 66% of the participants managed to make energy saving against the same period of the previous year while 38.8% achieved the targeted reduction rate(i.e. over 10%) and received the equivalent rewards.

  • PDF

Cooling and Heating Performance Under the Actual Operating Condition of a Ground Source Heat Pump System in a School Building (학교 건물에 설치된 지열원 열펌프 시스템의 실사용을 통한 냉난방성능 연구)

  • Kim, Eui-Young;Jeong, Young-Man;Song, Jae-Do;Lee, Jae-Keun;Kim, In-Kyu;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.586-589
    • /
    • 2009
  • This paper presents the performance of a water-to-refrigerant type ground source heat pump (GSHP) system installed in a school building in Korea. For analyzing the performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the input power of the GSHP system. The average cooling coefficient of performance (COP) of the heat pump was found to be 8.5 at 60% partial load condition, while the overall system COP was found to be 5.9. The average heating COP of the heat pump was found to be 6.5 at 45% partial load condition, while the overall system COP was found to be 5.0.

  • PDF

Feasibility Study on Installation of Individual Room Control Ventilation in Apartment House (공동주택의 실별 제어환기 도입 타당성 분석)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kwon, Yong-Il;Yun, Young-Woo;Cho, Chun-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.502-507
    • /
    • 2009
  • Trend of mechanical ventilation system applied to apartment house is introduced and feasibility study on installation of the individual room control ventilation as energy-saving method is carried out through field experiment. While initial cost of installation for the individual room control ventilation increases, the running cost is lower than the individual household control ventilation due to automatic flow rate control and reduction of fan power, and the management cost also decreases due to extension of use life of components. As the results of field experiment on $115m^2$-type apartment house, the individual room control ventilation could save the amount of 1,459.5Wh/day when compared with the individual room control ventilation

  • PDF

A Study on Entering Water Temperature in Vertical Closed Ground Loop System Considering the Economical Feasibility in Load of the Office Building (사무시설에 수직형 지열원 냉 난방시스템의 경제성을 고려한 인입온도(EWT)에 관한 연구)

  • Lee, Byung-Doo;Lee, Dae-Woo;Lee, Se-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.579-585
    • /
    • 2009
  • Recently, Vertical-Closed Loop system using geothermal which is the most efficient among the building cooling and heating systems is coming into wide spread due to assistance of domestic policies. However, there is a limitation that a design of ground heat exchanger taking 60% of construction cost is done by GLD and GLHEPRO programs without specific guidelines and consideration on Entering Water Temperature(EWT). For getting an optimal EWT, we analyzed the costs for construction of ground heat exchanger and cooling and heating for 15 years. In the results, reduction of construction costs as the length of ground heat exchanger shortens was much greater than increase of the electrical power consumption as COP gets low. EWT that COP of heat pump can be 3.76 or above was below $31^{\circ}C$ in cooling and was over $5^{\circ}C$ in heating.

  • PDF

The Operation Characteristics of Domestic 1kW Gas Fueled Internal Combustion Engine Cogeneration System (1kW급 가스엔진 열병합발전시스템 성능특성에 관한 연구)

  • Choi, Jae-Joon;Park, Byung-Sik;Jung, Dae-Heon;Im, Yong-Hoon;Choi, Young-Ho;Song, Dae-Sup
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.321-324
    • /
    • 2009
  • The unpredicted worldwide oil price makes the energy efficiency technology be more importance than any other period. The small cogeneration system is one of the most representative technology among the energy efficiency technologies, and recently, the household cogeneration system has been the center object of attention because of the loss of power transmission and the reasonable energy consumption relative to the household (condensing) boiler producing heat only. A tiny, 1kW of electrical output, gas fueled internal combustion engine cogeneration system was investigated. The electrical efficiency and thermal efficiency of the system were measured. With the emission characteristics, the cogeneration system was analyzed. It was showed the gas engine cogeneration system produced the lowest NOx level compared any other cogeneration system due to the three-way catalyst.

  • PDF

A Study on the Radiation Shielding Analysis for Reinforcing the Hot Cell Regular Concrete Shield Wall (핫셀의 일반 콘크리트 보강을 위한 방사선 차폐해석 연구)

  • 조일제;황용화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.985-990
    • /
    • 2003
  • In order to demonstrate Advanced Spent Fuel Conditioning Process (ACP), shielding facilities such as hot cell suitable to handling radionuclides and process property will be necessary. But the construction of new facilities needs much money, man-power and time, it is now scheduled to remodel the hot cell, which has already been installed and maintained at Irradiated Material Experiment Facility (IMEF) in the Korea Atomic Energy Research Institute (KAERI). The basic structure and concrete shield wall of hot cell partly have been constructed on the base floor in IMEF building in current status. And hot cell after remodeling will be used for carrying out the lab-scale experiment of ACP. The hot cell was built in accordance with 35 curies of fe-59(1.2 MeV) as design criteria of radiation dose limit. But the radioactive source of ACP is expected to be much higher than design criteria of IMEF, shielding ability of the hot cell in the current status is unsatisfactory to the hot test of ACP. Therefore shield wall shall be reinforced with heavy concrete, steel or lead. In this paper, dose rates are calculated according to ACP source, shielding materials, etc., and reinforcement structures are determined considering the current situation of hot cells, installation of shield windows and the easiness of work.

  • PDF

A study on the utilization of exhausted heat from subway for energy source of heat pump (공기열원 히트펌프의 에너지원으로서 지하철 배열 이용에 관한 연구)

  • Kim J.R.;Jeong K.C.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.13-19
    • /
    • 2000
  • Researches on unused energy are being continued because of the limited fossil fuel and the destruction of environment. Therefore this study was performed as follows The collectable amount of exhausted heat for an air-conditioning was calculated by the subway thermal environment prediction program. And the electric power needed by conventional heat source equipments was compared with one by unused heat source equipments when the exhausted heat was used by heat pump in heating and hot water supplying.

  • PDF

Comparative study of proportional-integral, proportional-resonant, and predictive deadbeat controllers in a PV PCS (태양광 전력변환장치의 PI, PR 및 PD 제어기 비교 연구)

  • Le, Dinh-Vuong;Kim, Chang-Soon;Hwang, Chul-Sang;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1050-1051
    • /
    • 2015
  • In industry, there are several different controllers which can be implemented for power conditioning systems (PCS) such as proportional-resonant (PR), predictive deadbeat (PD), or proportional-integral (PI) controller. But there are not any comparison studies about these controllers. To investigate the differences between the three types of the controllers, this paper presents a comparative study of PR, PI, and PD controllers in a photovoltaic (PV) PCS. These controllers are designed mathematically and simulated for the comparative analysis. The PI controller is designed in the rotating reference (dq) frame. The PR and PD controllers are implemented in the natural (abc) reference frame. The PCS is composed of a DC-DC boost converter and a full bridge inverter. The filter of the PCS is an LCL filter including a passive damping resistor. The parameters of PCS are 3 kW, 25 kHz switching frequency and 220 V-60 Hz grid voltage. The comparison results between these controllers for the grid-connected PCS are clearly shown. The simulation results demonstrate the detailed characteristics of each controller for the PV PCS in order to choose the controller for individual target properly.

  • PDF