• Title/Summary/Keyword: power cancellation

Search Result 305, Processing Time 0.022 seconds

Analysis of the Adaptation Characteristics of the Nulling Loop Control Circuit for the Feedforward Linear Power Amplifier (휘드훠워드 선형 전력 증폭기의 주 신호 제거회로 적응특성해석)

  • Park, Yil;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.13-21
    • /
    • 1998
  • In this paper, we analyze the main-carrier cancellation characteristics of the nulling loop control circuit which is used for the main-carrier cancellation circuit of the feedforward linear power amplifier. A new nulling loop error control method is proposed to improve the linear power amplifier characteristics. With this analysis, the main carrier cancellation ratio can be estimated and the required specifications of the main and auxiliary amplifiers can be optimized for the economic and power efficiency.

  • PDF

WEAKLY STABLE CONDITIONS FOR EXCHANGE RINGS

  • Chen, Huanyin
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.903-913
    • /
    • 2007
  • A ring R has weakly stable range one provided that aR+bR=R implies that there exists a $y{\in}R$ such that $a+by{\in}R$ is right or left invertible. We prove, in this paper, that every regular element in an exchange ring having weakly stable range one is the sum of an idempotent and a weak unit. This generalize the corresponding result of one-sided unit-regular ring. Extensions of power comparability and power cancellation are also studied.

Interference Cancellation System using Adaptive Feedback Method (적응성 궤환방식을 이용한 간섭잡음제거기)

  • 김선진;이제영;이종철;김종헌;이병제;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.183-191
    • /
    • 2003
  • In this paper, the interference cancellation system, which is used to cancel the feedback signal In the wireless communication system with the same frequency, is studied. The time-varying feedback signal generated from transmitter antenna to receiver antenna reduces the performance of the receiver system. The interference cancellation system using adaptive feedback method(AF-ICS) is suggested to prevent the oscillation of the receiver system and maintain the maximum output power of the power amplifier by the reduction of time-varying feedback signal.

Power-Assisted Door for a Passenger Vehicle (승용차의 개폐력 보조 문)

  • Lee, Byoung-Soo;Park, Min-Kyu;Sung, Kum-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.532-538
    • /
    • 2010
  • SD (Smart Door) is a human friendly power-assisted door system initially targeted for passenger car doors. The Smart Door offers comfort and safety to passengers or/and drivers by supplying additional power. Amount of power supplied by the Smart Door system is depend on the environment where the automotive is situated. It realizes comfort, for example, when the force applied by the passenger to the door is expected to be abnormal, the SD system tries to compensate passenger's effort by supplying additional force. In this study, to enhance the ease of opening and closing the doors of the passenger vehicle, a Smart Door with a power assist mechanism consisting of a motor was developed and analysed. A power assist mechanism mounted within the vehicle's door is designed and modeled for simulation purpose. The required force necessary to control the designed mechanism during the vehicle's roll, pitch and the opening angle of the door has been considered. To this end, we propose a power-assisting control strategy called "gravity cancellation". The system is analysed by numerical simulation with the gravity cancellation control algorithm.

A Quantitative Evaluation and Comparison of Harmonic Elimination Algorithms Based on Moving Average Filter and Delayed Signal Cancellation in Phase Synchronization Applications

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.717-730
    • /
    • 2016
  • The harmonic components of grid voltage result in oscillations of the calculated phase obtained via phase synchronization. This affects the security and stability of grid-connected converters. Moving average filter, delayed signal cancellation and their related harmonic elimination algorithms are major methods for such issues. However, all of the existing methods have their limitations in dealing with multiple harmonics issues. Furthermore, few studies have focused on a comparison and evaluation of these algorithms to achieve optimal algorithm selections in specific applications. In this paper, these algorithms are quantitatively analyzed based on the derived mathematical models. Moreover, an enhanced moving average filter and enhanced delayed signal cancellation algorithms, which are applicable for eliminating a group of selective harmonics with only one calculation block, are proposed. On this basis, both a comprehensive comparison and a quantitative evaluation of all of the aforementioned algorithms are made from several aspects, including response speed, required data storage size, sensitivity to sampling frequency, and elimination of random noise and harmonics. With the conclusions derived in this paper, better overall performance in terms of harmonic elimination can be achieved. In addition, experimental results under different conditions demonstrate the validity of this study.

The Design of Power Amplifier using Temperature Memory Effect Compensation (열잡음 메모리 효과 제거기를 이용한 전력증폭기의 효율 개선)

  • Ko, Young-Eun;Lee, Ji-Young
    • The Journal of Information Technology
    • /
    • v.10 no.3
    • /
    • pp.47-58
    • /
    • 2007
  • In this paper, we designed and manufactured the distortion-cancellation module which is able to compensate thermal-noise distortion by software. The distortion-cancellation algorithm not only bring forth system non-linear distortion by input level but also bring compensate component of distortion by thermal to get rid off distortion from now on. After TMS 320C6711 DSP to recognize our algorithm, we manufactured the module for every kinds of system. To evaluate efficiency of the distortion-cancellation module, we designed and manufactured communication system. By measured result, if system output power is -3dBm equally, 12dB of ACLR has improved in 1MHz away from a center frequency, and also gain has increased up to 0.5dB.

  • PDF

Development of Fault Location Method Using SWT and Travelling Wave on Underground Power Cable Systems (SWT와 진행파를 이용한 지중송전계통 고장점 추정 기법 개발)

  • Jung, Chae-Kyun;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.184-190
    • /
    • 2008
  • The fault location algorithm based on stationary wavelet transform was developed to locate the fault point more accurately. The stationary wavelet transform(SWT) was introduced instead of conventional discrete wavelet transform(DWT) because SWT has redundancy properties which is more useful in noise signal processing. In previous paper, noise cancellation technique based on the correlation of wavelet coefficients at multi-scales was introduced, and the efficiency was also proved in full. In this paper, fault section discrimination and fault location algorithm using noise cancellation technique were tested by ATP simulation on real power cable systems. From these results, the fault can be located even in very difficult and complicated situations such as different inception angle and fault resistance.

Interference Cancellation Scheme of End-to-End Method in Power Line Communication System for Smart Grid (스마트 그리드 시스템을 위한 전력선 통신 시스템의 종단 간 방식의 간섭 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.41-45
    • /
    • 2019
  • In this paper, we propose the interference cancellation scheme of end-to-end method algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information of receiver by applying a deep learning model at the receiver. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

Cancellation Scheme of impusive Noise based on Deep Learning in Power Line Communication System (딥러닝 기반 전력선 통신 시스템의 임펄시브 잡음 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.29-33
    • /
    • 2022
  • In this paper, we propose the deep learning based pre interference cancellation scheme algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information by applying a deep learning model at the transmitter. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

Energy-efficient Buffer-aided Optimal Relay Selection Scheme with Power Adaptation and Inter-relay Interference Cancellation

  • Xu, Xiaorong;Li, Liang;Yao, Yingbiao;Jiang, Xianyang;Hu, Sanqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5343-5364
    • /
    • 2016
  • Considering the tradeoff between energy consumption and outage behavior in buffer-aided relay selection, a novel energy-efficient buffer-aided optimal relay selection scheme with power adaptation and Inter-Relay Interference (IRI) cancellation is proposed. In the proposed scheme, energy consumption minimization is the objective with the consideration of relay buffer state, outage probability and relay power control, in order to eliminate IRI. The proposed scheme selects a pair of optimal relays from multiple candidate relays, denoted as optimal receive relay and optimal transmit relay respectively. Source-relay and relay-destination communications can be performed within a time-slot, which performs as Full-Duplex (FD) relaying. Markov chain model is applied to analyze the evolution of relay buffer states. System steady state outage probability and achievable diversity order are derived respectively. In addition, packet transmission delay and power reduction performance are investigated with a specific analysis. Numerical results show that the proposed scheme outperforms other relay selection schemes in terms of outage behavior with power adaptation and IRI cancellation in the same relay number and buffer size scenario. Compared with Buffer State relay selection method, the proposed scheme reduces transmission delay significantly with the same amount of relays. Average transmit power reduction can be implemented to relays with the increasing of relay number and buffer size, which realizes the tradeoff between energy-efficiency, outage behavior and delay performance in green cooperative communications.