• 제목/요약/키워드: power MOSFETs

검색결과 170건 처리시간 0.025초

에너지 획득을 위한 AC/DC 공진형 펄스 컨버터의 연구 (Study of AC/DC Resonant Pulse Converter for Energy Harvesting)

  • ;정교범
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.274-281
    • /
    • 2005
  • 압전소자를 에너지원으로 사용하여 자립형 전기전자시스템에 에너지를 공급하는 에너지 획득(Harvesting) 개념의 구현을 위하여, 새로운 AC/DC 공진형 펄스 컨버터를 제안한다. 컨버터는 정류기와 DC 컨버터의 2단계로 구성되었으며, AC/DC 변환을 위한 정류기는 MOSFET의 3상한 동작 특성을 이용하여 구현하고, N형 및 P형 MOSFETs을 사용하여 DC/DC 부스트 컨버터를 구현하였다. 제안된 컨버터 시스템의 동작원리 및 동작모드를 스위칭 소자의 기생캐패시턴스를 고려하여 해석하고, 시뮬레이션을 통하여 해석결과를 검증하였다. CMOS IC 칩으로 제작된 본 시스템의 실험 결과는 수십 uW 용량에서 에너지 획득 개념의 구현 가능성을 제시하였다.

실리콘 전력 MOSFET의 온도 관련 항복 전압과 ON 저항을 위한 해석적 표현 (Analytical Expressions of Temperature Dependent Breakdown Voltage and On-Resistance for Si Power MOSFETs)

  • 정용성
    • 대한전자공학회논문지SD
    • /
    • 제40권5호
    • /
    • pp.290-297
    • /
    • 2003
  • 전자와 정공의 온도 관련 이온화 계수로부터 추출한 온도 함수의 유효 이온화 계수 및 전자 이동도를 이용하여 실리콘 전력 MOSFET의 항복 전압과 on 저항을 위한 온도 함수의 해석적 표현식을 유도하였다. 온도 함수의 해석적 항복 전압 결과를 4x10/sup 14/ cm/sup -3/, 1x10/sup 15/ cm/sup -3/, 6x10/sup 16/ cm/sup -3/의 도핑 농도에 대해 각각 실험 결과와 비교하였고, 온도 및 항복 전압 함수의 on 저항 변화도 각각 실험 결과와 비교하였다. 각농도에 따른 온도 함수의 해석적 항복 전압은 77∼300k의 온도 범위에서 실험 결과와 10% 이내의 오차로 잘 일치하였다.

Analysis of Lattice Temperature in Super Junction Trench Gate Power MOSFET as Changing Degree of Trench Etching

  • Lee, Byeong-Il;Geum, Jong Min;Jung, Eun Sik;Kang, Ey Goo;Kim, Yong-Tae;Sung, Man Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권3호
    • /
    • pp.263-267
    • /
    • 2014
  • Super junction trench gate power MOSFETs have been receiving attention in terms of the trade-off between breakdown voltage and on-resistance. The vertical structure of super junction trench gate power MOSFETs allows the on-resistance to be reduced compared with conventional Trench Gate Power MOSFETs. The heat release of devices is also decreased with the reduction of on-resistance. In this paper, Lattice Temperature of two devices, Trench Gate Power MOSFET and Super junction trench gate power MOSFET, are compared in several temperature circumstance with the same Breakdown Voltage and Cell-pitch. The devices were designed by 100V Breakdown voltage and measured from 250K Lattice Temperature. We have tried to investigate how much temperature rise in the same condition. According as temperature gap between top of devices and bottom of devices, Super junction trench gate power MOSFET has a tendency to generate lower heat release than Trench Gate Power MOSFET. This means that Super junction trench gate power MOSFET is superior for wide-temperature range operation. When trench etching process is applied for making P-pillar region, trench angle factor is also important component. Depending on trench angle, characteristics of Super junction device are changed. In this paper, we focus temperature characteristic as changing trench angle factor. Consequently, Trench angle factor don't have a great effect on temperature change.

전력용 MOSFET의 PSpice 열적모델 구현 및 검증 (Implementation and Verification of PSpice Thermal Model for Power MOSFET)

  • 이경훈;박수완;정세교
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 추계학술대회
    • /
    • pp.45-46
    • /
    • 2017
  • The operating characteristics of power MOSFETs greatly vary depending on the junction temperature. A PSpice thermal model is implemented to simulate the temperature characteristics of the power MOSFETs in this paper. A thermal model is derived that can be applied online in PSpice simulations and PSpice parameters are reconstructed using a curve fitting from commercial data sheets. The implemented PSpice model is applied to the buck converter and the validity of the model is verified through experiments.

  • PDF

A New High Efficiency ZVZCS Bidirectional DC/DC Converter for HEV 42V Power Systems

  • Kim Chong-Eun;Han Sang-Kyoo;Park Ki-Bum;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.271-278
    • /
    • 2006
  • A new high efficiency zero-voltage and zero-current switching (ZVZCS) bidirectional DC/DC converter is proposed in this paper. The proposed converter consists of two symmetric half-bridge cells as the input and output stages. MOSFETs of input stage are turned-on in ZVS condition, and those of output stage are turned-off in ZCS condition. In addition, MOSFETs of input and output stages have low voltage stresses clamped to input and output voltage, respectively. Therefore, the proposed converter has high efficiency and high power density. The operational principles are analyzed and the advantages of the proposed converter are described. The 300W prototype of the proposed converter is implemented for 42V hybrid electric vehicle (HEV) application in order to verify the operational principles and advantages.

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

Feasibility Study of Tapped Inductor Filter Assisted Soft-Switching PWM DC-DC Power Converter

  • Moisseev S.;Sato S;Hamada S;Wakaoka M
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.231-234
    • /
    • 2003
  • This paper presents a novel high frequency transformer linked full-bridge type soft-switching phase-shift PWM control scheme DC-DC power converter, which can be used as power conditioner fur small-scale fuel cell power generation system. Using full-bridge soft-switching DC-DC converter topology makes possible to use low voltage high performance MOSFETs to achieve high efficiency of the power conditioner. A tapped inductor filter is implemented in the proposed soft-switching converter topology to achieve soft-switching PWM constant high frequency operation for a wide load variation range. to minimize circulating and idling currents without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching DC-DC converter is verified in laboratory level experiment with 1 kW 100kHz breadboard setup using power MOSFETs. Actual efficiency of 94-96$\%$ is obtained for the wide load range

  • PDF

Process-Variation-Adaptive Charge Pump Circuit using NEM (Nano-Electro-Mechanical) Relays for Low Power Consumption and High Power Efficiency

  • Byeon, Sangdon;Shin, Sanghak;Song, Jae-Sang;Truong, Son Ngoc;Mo, Hyun-Sun;Lee, Seongsoo;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.563-569
    • /
    • 2015
  • For some low-frequency applications such as power-related circuits, NEM relays have been known to show better performance than MOSFETs. For example, in a step-down charge pump circuit, the NEM relays showed much smaller layout area and better energy efficiency than MOSFETs. However, severe process variations of NEM relays hinder them from being widely used in various low-frequency applications. To mitigate the process-variation problems of NEM relays, in this paper, a new NEM-relay charge pump circuit with the self-adjustment is proposed. By self-adjusting a pulse amplitude voltage according to process variations, the power consumption can be saved by 4.6%, compared to the conventional scheme without the self-adjustment. This power saving can also be helpful in improving the power efficiency of the proposed scheme. From the circuit simulation of NEM-relay charge pump circuit, the efficiency of the proposed scheme is improved better by 4.1% than the conventional.

CMOS-IC Implementation of a Pulse-type Hardware Neuron Model with Bipolar Transistors

  • Torita, Kiyoko;Matsuoka, Jun;Sekine, Yoshifumi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.615-618
    • /
    • 2000
  • A number of studies have recently been made on hardware for a biological neuron f3r application with information processing functions of neural networks. We have been trying to produce hardware from the viewpoint that development of a new hardware neuron model is one of the important problems in the study of neural networks. In this paper, we first discuss the circuit structure of a pulse-type hardware neuron model with the enhancement-mode MOSFETs (E-MOSFETs). And we construct a pulse-type hardware neuron model using I-MOSFETs. As a result, it is shown that our proposed new model can exhibit firing phenomena even if the power supply voltage becomes less than 1.5[V]. So it is verified that our model is profitable for IC.

  • PDF

A New LLC Resonant Converter with Multiple Outputs for High Efficiency and Low Cost PDP Power Module

  • Kim, Chong-Eun;Yi, Kang-Hyun;Moon, Gun-Woo;Lee, Buem-Joo;Kim, Sang-Man
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.439-441
    • /
    • 2005
  • A new LLC resonant converter with multiple outputs is proposed for high efficiency and low cost plasma display panel (PDP) power module. In the proposed converter, ZVS turn-on of the primary MOSFETs and ZCS nun-off of the secondary diodes are guaranteed in the overall input voltage and output load range. Moreover, the primary MOSFETs and the secondary diodes have low voltage stresses clamped to input and the output voltage, respectively. Therefore, the proposed converter shows the high efficiency due to the minimized switching and conduction losses. In addition, by employing the transformer, which has the two and more secondary side, the proposed converter can have multiple outputs and they show the great cross-regulation characteristics. As a result, the proposed converter can be implemented with low cost and compact size. The 500W prototype is implemented, which integrates the sustaining and addressing power supplies of PDP power module. The maximum efficiency is 96.8% and the respective output voltages are well regulated. Therefore, the proposed converter is suitable for high efficiency and low cost PDP power module.

  • PDF