본 논문에서는 $0.35-{\mu}m$ CMOS 공정을 이용 $8{\sim}10.9$ GHz 밴드를 갖는 새로운 구조의 LC VCO를 설계 제안하였다. 이 회로 구성은 LC 탱크 기반의 전형적인 NMOS, PMOS cross-coupled 쌍을 병렬로 구성한 새로운 구조로 상보적인 NMOS와 PMOS 꼬리 전류와 같은 MOS cross-coupled쌍과 출력 버퍼로 구성하였다. 본 논문에서 제시한 구조로 설계된 LC VCO는 8GHz에서 10.9GHz까지로 29%의 증가된 튜닝 범위와 6.48mV의 낮은 전력소모를 가지는 것을 확인하였고 이의 core size는 $270{\mu}m{\times}340{\mu}m$, 시뮬레이션을 통한 VCO의 위상잡음은 1MHz와 10MHz offset에서 각각 -117dBc/Hz와 -137dBc/Hz이다. FOM은 10GHz의 중심 주파수으로 부터 1MHz offset에서 -189dBc/Hz를 가진다. 제안한 설계방법은 10Gb/s급의 클럭과 데이터 복원회로 그리고 SONET 통신응용에 매우 유용하다.
본 논문에서는 자동 크기 조절 회로 (Automatic Level Controller_ALC)와 switched LC tank를 이용한 집적화된 저위상 잡음 다중 대역 CMOS 전압 제어 발진기를 제안하였다. 제안된 전압 제어 발진기는 0.13-um CMOS 공정으로 설계되었다. Switched LC tank는 MOS 스위치를 이용하여 스위칭되는 한 쌍의 캐패시터와 두 쌍의 인덕터로 설계되었다. 이 구조를 이용하여 4개의 대역 (2.986 ${\sim}$ 3.161, 3.488 ${\sim}$ 3.763, 4.736 ${\sim}$ 5.093, 그리고 5.35 ${\sim}$ 5.887 GHz) 동작이 하나의 전압 제어 발진기를 통하여 이루어졌다. 1.2 V의 공급 전압을 갖는 전압 제어 발진기는 각각 2.986 GHz에서 -118.105 dBc/Hz @ 1 MHz, 5.887 GHz에서 -113.777 dBc/Hz @ 1 MHz의 위상 잡음을 갖는다. 줄어든 위상 잡음은 가장 넓은 주파수 조절 범위인 2.986 ${\sim}$ 5.887 GHz에서 대략 -1 ${\sim}$ -3 dBc/Hz @ 1 MHz이다. 전압 제어 발진기는 전체 주파수 대역에서 4.2 mW ${\sim}$ 5.4 mW의 전력을 소모한다.
조도센서 칩은 아날로그 회로의 트리밍이나 디지털 레지스터의 초기 값을 셋팅하기 위해 소용량의 eFuse(electrical Fuse) OTP(One-Time Programmable) 메모리 IP(Intellectual Property)를 필요로 한다. 본 논문에서는 1.8V LV(Low-Voltage) 로직 소자를 사용하지 않고 3.3V MV(Medium Voltage) 소자만 사용하여 128비트 eFuse OTP IP를 설계하였다. 3.3V 단일 MOS 소자로 설계한 eFuse OTP IP는 1.8V LV 소자의 gate oxide 마스크, NMOS와 PMOS의 LDD implant 마스크에 해당되는 총 3개의 마스크에 해당되는 공정비용을 줄일 수 있다. 그리고 1.8V voltage regulator 회로가 필요하지 않으므로 조도센서 칩 사이즈를 줄일 수 있다. 또한 조도센서 칩의 패키지 핀 수를 줄이기 위해 프로그램 전압인 VPGM 전압을 웨이퍼 테스트 동안 VPGM 패드를 통해 인가하고 패키징 이후는 PMOS 파워 스위칭 회로를 통해 VDD 전압을 인가하므로 패키지 핀 수를 줄일 수 있다.
본 논문에서는 ultra mobile PC (UMPC) 및 휴대용 기기 시스템 같이 고속으로 동작하며 고해상도 저전력 및 소면적을 동시에 요구하는 16M-color low temperature Poly silicon (LTPS) thin film transistor liquid crystal display (TFT-LCD) 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 70.78mW 0.13um CMOS LCD driver IC (LDI) 를 제안한다. 제안하는 LDI는 저항 열 구조를 사용하여 고해상도에서 전력 소모 및 면적을 최적화하였으며 column driver는 LDI 전체 면적을 최소화하기 위해 하나의 column driver가 12개의 채널을 구동하는 1:12 MUX 구조로 설계하였다. 또한 신호전압이 rail-to-rail로 동작하는 조건에서 높은 전압 이득과 낮은 소비전력을 얻기 위해 class-AB 증폭기 구조를 사용하였으며 고화질을 구현하기 위해 오프 셋과 출력편차의 영향을 최소화하였다 한편, 최소한의 MOS 트랜지스터 소자로 구현된 온도 및 전원전압에 독립적인 기준 전류 발생기를 제안하였으며, 저전력 설계를 위하여 차세대 시제품 칩의 source driver에 적용 가능한 새로운 구조의 slew enhancement기법을 추가적으로 제안하였다. 제안하는 시제품 LDI는 0.13um CMOS 공정으로 제작되었으며, 측정된 source driver 출력 정착 시간은 high에서 low 및 low에서 high 각각 1.016us, 1.072us의 수준을 보이며, source driver출력 전압 편차는 최대 11mV를 보인다. 시제품 LDI의 칩 면적은 $12,203um{\times}1500um$이며 전력 소모는 1.5V/5.5V 전원 저압에서 70.78mW이다.
본 논문에서는 10비트 해상도를 가지면서 0.5V부터 1.2V까지의 전원 전압에서 10MS/s 이상 100MS/s 까지 재구성이 가능한 저전력 2단 파이프라인 ADC를 제안한다. 제안하는 ADC는 0.5V의 전원 전압 조건에서도 10비트 해상도를 얻기 위해 입력단 SHA 회로에는 낮은 문턱 전압을 가지는 소자를 사용한 게이트-부트스트래핑 기법 기반의 샘플링 스위치를 사용하였으며, SHA 회로와 MDAC 회로에 사용된 증폭기에도 넓은 대역폭을 얻기 위해 입력단에는 낮은 문턱 전압을 가지는 소자를 사용하였다. 또한 온-칩으로 집적된 조정 가능한 기준 전류 발생기는 10비트의 해상도를 가지고, 넓은 영역의 전원 전압에서 동작할 수 있도록 증폭기의 정적 및 동적 성능을 최적화시킨다. MDAC 회로에는 커패시터 열의 소자 부정합에 의한 영향을 최소화하기 위해서 인접신호에 덜 민감한 전 방향 대칭 구조의 레이아웃 기법을 제안하였다. 한편, flash ADC 회로 블록에는 비교기에서 소모되는 전력을 최소화하기 위해 스위치 기반의 바이어스 전력 최소화 기법을 적용하였다. 시제품 ADC는 0.13um CMOS 공정으로 제작되었으며, 측정된 최대 DNL 및 INL은 각각 0.35LSB 및 0.49LSB 수준을 보인다. 또한, 0.8V의 전원 전압 60MS/s의 동작 속도에서 최대 SNDR 및 SFDR이 각각 56.0dB, 69.6dB이고, 19.2mW의 전력을 소모하며, ADC의 칩 면적은 $0.98mm^2$이다.
본 논문에서는 증식형 MOS 트랜지스터와 저항만을 사용하여 기준전압을 발생하기 위한 두 가지 방법을 제안하였다. 첫 번째 방법은 문턱전압에 비례하는 전압성분과 열전압에 비례하는 전압성분을 합하여 온도보상을 하는 전압모드 방식이고, 두 번째는 문턱전압에 비례하는 전류성분과 열전압에 비례하는 전류성분을 합하여 온도보상을 하는 전류모드 방식이다. 설계된 회로들을 $0.65{\mu}m$ n-well CMOS 공정 페러미터를 사용하여 HSPICE 모의실험한 결과, 전압모드 회로의 경우 공급전압에 대한 변화율은 $-30^{\circ}C{\sim}130^{\circ}C$의 온도범위에서 0.21%/V 이하이고, 온도에 대한 변화율은 $3V{\sim}12V$의 공급전압 범위에서 $48.0ppm/^{\circ}C$ 이하이다. 전류모드 회로의 경우는 공급전압에 대한 변화율이 $-30^{\circ}C{\sim}130^{\circ}C$의 온도범위에서 0.08%/V 이하이고, 온도에 대한 변화율은 $4V{\sim}12V$의 공급전압 범위에서 $38.2ppm/^{\circ}C$ 이하이다. 또한 전력소모는 5V, $30^{\circ}C$일 때 전압모드 경우와 전류모드 경우 각각 $27{\mu}W$와 $65{\mu}W$로 저전력 특성을 보인다. 제작된 전압모드 기준전압 발생회로를 측정한 결과, 공급전압에 대한 변화율은 $30^{\circ}C{\sim}100^{\circ}C$의 온도범위에서 0.63%/V 이하이고, 온도에 대한 변화율은 $3.0{\sim}6.0V$의 공급전압 범위에서 $490ppm/^{\circ}C$ 보다 작다. 제안된 회로들은 구조가 간단하기 때문에 설계가 용이하고, 특히 전류모드의 경우 넓은 범위의 기준전압 발생이 가능하다는 장점을 갖는다.
본 논문에서는 IEEE 802.11n 표준과 같은 근거리 무선통신망 응용을 위한 10비트 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS ADC를 제안한다. 제안하는 ADC는 고속 동작에 적합한 3단 파이프라인 구조를 기반으로 제작되었으며 각단에 공통적으로 사용되는 증폭기, 프리앰프 및 저항열을 최대한 효율적으로 공유함으로써 전력 소모 및 면적을 최소화하였다. 첫 번째 MDAC과 두 번째 MDAC에는 스위치 저항과 메모리 효과가 없는 증폭기 공유기법을 사용하였고, 세 개의 4비트 flash ADC에는 단 하나의 저항열만을 사용하는 동시에 두 번째 flash ADC와 세 번째 flash ADC에는 프리앰프를 공유하여 전력 소모와 면적을 최소화하였다. 보간 기법을 사용하여 요구되는 프리앰프의 수를 반으로 줄였으며, 프리앰프의 공유 및 보간 기법으로 인한 영향을 최소화하기 위해 낮은 킥-백 잡음을 갖는 비교기를 추가로 제안하였다. 제안하는 시제품 ADC는 0.18um 1P6M CMOS 공정으로 제작되었으며, 측정된 DNL 및 INL은 10비트 해상도에서 각각 최대 0.83LSB와 1.52LSB의 수준을 보이며, 동적 성능으로는 100MS/s의 동작 속도에서 각각 52.1dB의 SNDR과 67.6dB의 SFDR을 갖는다. 시제품 ADC의 칩 면적은 $0.8mm^2$이며 전력 소모는 1.8V 전원 전압을 인가하였을 때 100MS/s에서 27.2mW이다.
본 논문에서는 CMOS 기술을 이용하여 2.4GHz ISM 주파수 대역의 LNA를 설계하였다. 캐스코드 증폭기를 이용하여 잡음을 억제하고 이득을 향상시켰으며 캐스캐이드의 공통 소스 증폭기의 출력을 캐스코드와 병렬로 연결되는 MOS의 입력으로 연결하여 IM3를 감소시키고자 하였다. 제안된 저잡음증폭기는 3.3V의 전원을 공급하는 Hynix 0.35$\mu\textrm{m}$ 2-poly 4-metal CMOS 공정을 이용하여 설계되었다. HSPICE Tool을 이용하여 시뮬레이션 하여 13dB의 이득과 1.7dB의 잡음지수, 약 8dBm의 IIP3, -3ldB와 -28dB의 입ㆍ출력 매칭특성을 확인하였다. 이 때 reverse isolation은 -25dB, 전력사용은 4.7mW이었다. Mentor를 이용한 Layout은 2${\times}$2$\mu\textrm{m}$ 이하의 크기를 갖는다.
본 논문에서는 push-push 방식을 사용하여 설계 제작된 0.18-${\mu}m$ SiGe BiCMOS 공정 기반 70 GHz와 140 GHz에서 모두 동작하는 듀얼 밴드 전압 제어 발진기(Voltage Controlled Oscillator: VCO)의 결과를 보인다. 측정 결과, 본 전압 제어 발진기는 조절 전압이 0.2 V에서 2 V까지 변하는 동안 하위 밴드와 상위 밴드에서 각각 67.9~76.9 GHz, 134.3~154.5 GHz의 주파수 조절 범위를 갖는다. 보정 후의 최대 출력 전력은 각각 -0.55 dBm과 -15.45dBm이었다. 본 전압 제어 발진기는 4 V의 전원으로부터 18 mA의 DC 전류를 소모한다.
본 논문에서는 다운 디지털 회로(DLC)를 이용하여 4치 논리 게이트를 설계하였고, 이들 게이트를 이용하여 동기식 4치 up/down 카운터를 제안하였다. 제안된 카운터는 T-type 4치 플립플롭과 $2\times1$ 임계-t 멀티플렉서로 이루어져 있고, T-type 4치 플립플롭은 D-type 4치 플립플롭과 4치 논리 게이트들(모듈러-4 가산 게이트, 4치 인버터, 항등 셀, $4\times1$ 멀티플렉서)로 구성되어 있다. 이 카운터의 모의실험 결과는 10[ns]의 지연시간과 8.48[mW]의 전력소모를 보여준다. 또한 다치논리 회로로 설계된 카운터는 상호결선과 칩 면적의 감소뿐만 아니라 디지트 확장의 용이함의 이점을 가진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.