• Title/Summary/Keyword: powder soy formulation

Search Result 5, Processing Time 0.017 seconds

Biological control of Gray Mold Rot of Perilla Caused by Botrytis cinerea II. Formulation of Antagonistic Bacteria and Its Control Effect (들깨 잿빛곰팡이병의 생물학적 방제 II. 미생물농약의 제조 및 그 방제효과)

  • Moon, Byung-Ju;Kim, Choul-Soung;Song, Ju-Hee;Kim, Ju-Hee;Lee, Jae-Pil;Park, Hyean-Cheal;Shin, Dong-Bum
    • Research in Plant Disease
    • /
    • v.8 no.3
    • /
    • pp.184-188
    • /
    • 2002
  • An antagonistic bacteria, Bacillus licheniformis Nl strain which effectively inhibited mycelial growth of gray mold rot pathogen, Botrytis cinerea was isolated from the rhizosphere of perilla crop. Powder soy formulation by B. lichentfomis Nl strain as a biocontrol agent was developed far the first time and estimated its control effect on perilla leaves in this study. First of all, far the mass production of antifungal metabolites of B. lichentfomis Nl strain in flask liquid culture, the most effective carbon and nitrogen source were selected as glucose and tryp-tone, respectively, For the formulation, vegetative biomass of B. licheniformis Nl strain from 5-day-old liquid culture in nutrient broth added glucose and tryptone was mixed with soy flour, rice flour glucose, FeSo$_4$~7$H_2O$, and MnCl$_2$. 4$H_2O$, and dried and pulverized. In plastic house test, powder soy formulation effectually controlled gray mold rot as the control value of 93.1 %, was more effective than chemical fungicide, benomyl showing the control value of 86.1%. Thus, development of powder soy formulation of B. lichentfomis Nl will aid large-scale application of biological control in field trials.

Preparation and evaluation of proliposomes formulation for enhancing the oral bioavailability of ginsenosides

  • Duy-Thuc Nguyen;Min-Hwan Kim;Min-Jun Baek;Nae-Won Kang;Dae-Duk Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.417-424
    • /
    • 2024
  • Background: This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker. Methods: A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and in vitro release. The enhancement of oral bioavailability was investigated and analyzed by noncompartmental parameters after oral administration of the formulations. Results: PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (- 28.6 mV) and a high entrapment efficiency (97.3%). The results of the in vitro release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group. Conclusion: The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.

Combined Effects of Wheat Sprout and Isolated Soy Protein on Quality Properties of Breakfast Sausage

  • Lee, Cheol-Won;Kim, Tae-Kyung;Hwang, Ko-Eun;Kim, Hyun-Wook;Kim, Young-Boong;Kim, Cheon-Jei;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.52-61
    • /
    • 2017
  • The objective of this study was to investigate the effects of different concentrations of WSP (wheat sprout powder) and ISP (isolated soy protein) on the quality of breakfast sausage. Treatments were formulated as follows: Control, T1 (2.0% ISP), T2 (1.5% ISP + 0.5% WSP), T3 (1.0% ISP + 1.0% WSP), T4 (0.5% ISP + 1.5% WSP) and T5 (2.0% WSP). The treatments were analyzed for color, pH, cooking loss, emulsion stability, protein solubility, viscosity, texture properties and sensory evaluation. Lightness and redness were reduced and yellowness was increased as increased level of WSP, due to the dark green color of WSP (p<0.05). The pH values of all samples were affected by WSP which has lower pH (p<0.05). The emulsion stability and cooking loss of treatments were improved with increasing level of WSP (p<0.05). The protein solubility, viscosity and overall texture properties of the sausage indicated significant differences in relation to the level of WSP and ISP (p<0.05). The sensory evaluation indicated that the greatest flavor and overall acceptability in sausage was achieved at WSP 1% combination with ISP 1% (T3) (p<0.05). Therefore, these results indicate that breakfast sausage containing 1% WSP and 1% ISP is the optimal formulation, taking into consideration the overall physico-chemical properties and sensory evaluation.

Survey on the Manufacturing Process of Traditional Meju for and of Kanjang(Korean Soy Sauce) (한국 전통간장 및 메주 제조공정에 관한 조사 연구)

  • 이권행;김남대;유진영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.390-396
    • /
    • 1997
  • Meju is a basis for manufacturing Kanjang, Meju was traditionally prepared at home by different types of process depending on the regional area. It is necessary to standardize and simplify the process of Meju-preparation for Kanjang of good quality. For these purposes, the process of Meju and Kangjang making as well as analysis of commercial Kanjang, were compared. Generally, traditional Meju was prepared by steeping and dehulling the whole soybean. After steeping for 24hr. soybean absorbed water up to 110~120% of its weight. The soaked soybeans were steamed for 2hr. and cooled to 5$0^{\circ}C$. Cooked soybeans were crushed down to the size of 10~15 mesh and molded. Molded soybeans were dried for 2 days in the air, hung up by rice straw and fermented for 20~30 days under natural environmental condition. On the other hand, commercial soybean koji was made of defatted soybean. Defatted soybeans were steeped in water and steamed for 15~30min at 0.7~1.2 kg/$\textrm{cm}^2$. Steamed and defatted soybean was cooled to 4$0^{\circ}C$. Separately, wheat power was roasted at 200~30$0^{\circ}C$ by wheat roaster. Mixture of steamed defatted soybean and roasted wheat powder (5/5 to 7/3) were inoculated with 0.1~0.2% Aspergillus sojae and incubated for 2 days at 3$0^{\circ}C$ with occasional stirring. Chemical analysis showed that traditional soy sauces contained the following composition: NaCl, 20.12~25.42%; total nitrogen, 0.64~0.91%; pure extract, 9.47~11.20%; color, 2.34~4.01; pH, 4.92~5.12. Commercial products contained: NaCl, 15.20~17.19%; total nitrogen, 1.25~1.40%; pure extract, 18.17~21.47%; color, 5.41~21.12; pH, 4.51~4.66 and ethalnol. 2.97~3.12%. Organoleptic test on taste, color and flavor of traditional and commercial soysauce indicated that most of the consumers prefer commercial products to traditional products. Preferrable formulation of Kanjang based on organoleptic test of soy sauces was assumed as containing; NaCl, 16.0%; total nitrogen, 1.40%; pure extract, 19.97%; color, 12.98; pH, 4.61 and ethanol, 2.96.

  • PDF

Optimum Formulation of Kochujang Seasoning Sauce with the Addition of Fruit and Vegetable Extract for Pork Bulgogi (돼지불고기용 과채열수추출액 함유 고추장양념소스 최적 배합비 개발)

  • Oh, Hyun-Ju;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.505-511
    • /
    • 2008
  • This study was carried out to investigate the antioxidative effect of Kochujang seasoning sauce with the addition of fruit and vegetable extract (FVE) for pork Bulgogi, as well as to establish the optimum mixture ratio of ingredients using mixture experimental design (MED). During 5 months of storage at $-25^{\circ}C$, the thiobarbituric acid (TBA) values of the seasoned pork containing soy sauce (control), Kochujang added group (KG) and Kochujang and FVE added group (KFVEG) were remarkably lower than that of unseasoned pork. Among the seasoned porks, the antioxidative effect of KG was much higher than the control. Moreover, TBA values of KFVEG were significantly lower than those of KG. Therefore, the lipid oxidation stability of seasoned pork Bulgogi was improved by the addition of Kochujang, red pepper powder and FVE into the seasoning sauce. When Kochujang was used in seasoning sauce, the preference scores of pork Bulgogi increased with the increasing amount of red pepper powder and FVE. The optimum mixture ratios of seasoning sauce for pork Bulgogi established by the MED were Kochujang 0.04, red pepper powder 0.20, FVE 0.39 and water 0.37.