DOI QR코드

DOI QR Code

Preparation and evaluation of proliposomes formulation for enhancing the oral bioavailability of ginsenosides

  • Duy-Thuc Nguyen (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Min-Hwan Kim (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Min-Jun Baek (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Nae-Won Kang (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Dae-Duk Kim (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2023.01.12
  • Accepted : 2024.03.10
  • Published : 2024.07.01

Abstract

Background: This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker. Methods: A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and in vitro release. The enhancement of oral bioavailability was investigated and analyzed by noncompartmental parameters after oral administration of the formulations. Results: PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (- 28.6 mV) and a high entrapment efficiency (97.3%). The results of the in vitro release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group. Conclusion: The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.

Keywords

Acknowledgement

This work was supported by the research grant of the Korean Society of Ginseng (2017) and the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (No. NRF-2018R1A5A2024425 and NRF-2020R1A2C2099983).

References

  1. Yu SE, Mwesige B, Yi YS, Yoo BC. Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res 2019;43:361-7. https://doi.org/10.1016/j.jgr.2018.09.001. 
  2. Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 2008;22:851-8. https://doi.org/10.1002/ptr.2384. 
  3. Kim H, Lee JH, Kim JE, Kim YS, Ryu CH, Lee HJ, et al. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res 2018;42:361-9. https://doi.org/10.1016/j.jgr.2017.12.003. 
  4. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metabol Dispos 2003;31:1065-71. https://doi.org/10.1124/dmd.31.8.1065. 
  5. Nekkanti V, Wang Z, Betageri GV. Pharmacokinetic evaluation of improved oral bioavailability of valsartan: proliposomes versus self-nanoemulsifying drug delivery system. AAPS PharmSciTech 2016;17:851-62. https://doi.org/10.1208/s12249-015-0388-8.
  6. Voruganti S, Qin JJ, Sarkar S, Nag S, Walbi IA, Wang S, et al. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action. Oncotarget 2015;6:21379-94. https://doi.org/10.18632/oncotarget.4091. 
  7. Jin X, Zhang ZH, Sun E, Tan X Bin, Li SL, Cheng XD, et al. Enhanced oral absorption of 20(S)-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: in vitro and in vivo studies. Int J Nanomed 2013;8:641-52. https://doi.org/10.2147/IJN.S38203. 
  8. Hong C, Wang D, Liang J, Guo Y, Zhu Y, Xia J, et al. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics 2019;9:4437-49. https://doi.org/10.7150/thno.34953. 
  9. Tran P, Park JS. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs. Journal of Pharmaceutical Investigation 2021;51(4):439-63. https://doi.org/10.1007/S40005-021-00516-0. 2021;51. 
  10. Son GH, Lee BJ, Cho CW. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig 2017;47:287-96. https://doi.org/10.1007/s40005-017-0320-1. 
  11. Noh G, Keum T, Bashyal S, Seo JE, Shrawani L, Kim JH, et al. Recent progress in hydrophobic ion-pairing and lipid-based drug delivery systems for enhanced oral delivery of biopharmaceuticals. J Pharm Investig 2022;52:75-93. https://doi.org/10.1007/s40005-021-00549-5. 
  12. Kim JS. Liposomal drug delivery system. J Pharm Investig 2016;46:387-92. https://doi.org/10.1007/s40005-016-0260-1. 
  13. Jeon D, Kim K-T, Baek M-J, Kim DH, Lee J-Y, Kim D-D. Preparation and evaluation of celecoxib-loaded proliposomes with high lipid content. Eur J Pharm Biopharm 2019;141:139-48. https://doi.org/10.1016/j.ejpb.2019.05.025. 
  14. Kim MH, Kim DH, Nguyen DT, Lee HS, Kang NW, Baek MJ, et al. Preparation and evaluation of Eudragit l100-PEG proliponiosomes for enhanced oral delivery of celecoxib. Pharmaceutics 2020;12:1-14. https://doi.org/10.3390/pharmaceutics12080718. 
  15. Adel IM, Elmeligy MF, Abdelrahim MEAE, Maged A, Abdelkhalek AA, Abdelmoteleb AMMM, et al. Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin. Int J Nanomed 2021;16:2667-87. https://doi.org/10.2147/IJN.S306831. 
  16. Jahn A, Song CK, Balakrishnan P, Hong SS, Lee JH, Chung SJ, et al. AAPE proliposomes for topical atopic dermatitis treatment. J Microencapsul 2014;31:768-73. https://doi.org/10.3109/02652048.2014.932027. 
  17. Karn PR, Jin SE, Lee BJ, Sun BK, Kim MS, Sung JH, et al. Preparation and evaluation of cyclosporine A-containing proliposomes: a comparison of the supercritical antisolvent process with the conventional film method. Int J Nanomed 2014;9:5079-91. https://doi.org/10.2147/IJN.S70340. 
  18. Byeon JC, Lee SE, Kim TH, Ahn J bin, Kim DH, Choi JS, et al. Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability. Drug Deliv 2019;26:216-25. https://doi.org/10.1080/10717544.2018.1551441. 
  19. Arregui JR, Kovvasu SP, Betageri GV. Daptomycin proliposomes for oral delivery: formulation, characterization, and in vivo pharmacokinetics. AAPS PharmSciTech 2018;19:1802-9. https://doi.org/10.1208/s12249-018-0989-0. 
  20. Sharma S, Jyoti K, Sinha R, Katyal A, Jain UK, Madan J. Protamine coated proliposomes of recombinant human insulin encased in Eudragit S100 coated capsule offered improved peptide delivery and permeation across Caco-2 cells. Mater Sci Eng C 2016;67:378-85. https://doi.org/10.1016/j.msec.2016.05.010. 
  21. Kim MH, Kim DH, Nguyen DT, Lee HS, Kang NW, Baek MJ, et al. Preparation and evaluation of Eudragit l100-PEG proliponiosomes for enhanced oral delivery of celecoxib. Pharmaceutics 2020;12:1-14. https://doi.org/10.3390/pharmaceutics12080718. 
  22. Bankole VO, Osungunna MO, Souza CRF, Salvador SL, Oliveira WP. Spray-dried proliposomes: an innovative method for encapsulation of Rosmarinus officinalis L. Polyphenols. AAPS PharmSciTech 2020;21:143. https://doi.org/10.1208/s12249-020-01668-2. 
  23. Baek MJ, Shin HJ, Park JH, Kim J, Kang IM, Lee JI, et al. Preparation and evaluation of the doxazosin-bentonite composite as a pH-dependent controlled-release oral formulation. Appl Clay Sci 2022;229:106677. https://doi.org/10.1016/J.CLAY.2022.106677. 
  24. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J 2010;12:263-71. https://doi.org/10.1208/s12248-010-9185-1. 
  25. Nguyen DT, Kim MH, Yu NY, Baek MJ, Kang KS, Lee KW, et al. Combined orobol-bentonite composite formulation for effective topical skin targeted therapy in mouse model. Int J Nanomed 2022;17:6513. https://doi.org/10.2147/IJN.S390993. 
  26. Baek MJ, Park JH, Nguyen DT, Kim D, Kim J, Kang IM, et al. Bentonite as a water-insoluble amorphous solid dispersion matrix for enhancing oral bioavailability of poorly water-soluble drugs. J Contr Release 2023;363:525-35. https://doi.org/10.1016/J.JCONREL.2023.09.051. 
  27. Kang NW, Lee JY, Kim DD. Hydroxyapatite-binding albumin nanoclusters for enhancing bone tumor chemotherapy. J Contr Release 2022;342:111-21. https://doi.org/10.1016/j.jconrel.2021.12.039. 
  28. Lee HS, Kang NW, Kim H, Kim DH, Chae J woo, Lee W, et al. Chondroitin sulfate-hybridized zein nanoparticles for tumor-targeted delivery of docetaxel. Carbohydr Polym 2021;253:117187. https://doi.org/10.1016/J.CARBPOL.2020.117187. 
  29. Blandizzi C, Viscomi GC, Scarpignato C. Impact of crystal polymorphism on the systemic bioavailability of rifaximin, an antibiotic acting locally in the gastrointestinal tract, in healthy volunteers. Drug Des Dev Ther 2014;9:1-11. https://doi.org/10.2147/DDDT.S72572. 
  30. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Bjorkqvist M, Heikkila T, et al. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Contr Release 2005;108:362-74. https://doi.org/10.1016/j.jconrel.2005.08.017. 
  31. Kapoor S, Hegde R, Bhattacharyya AJ. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J Contr Release 2009;140:34-9. https://doi.org/10.1016/j.jconrel.2009.07.015. 
  32. Tang C, Wang Y, Long Y, An X, Shen J, Ni Y. Anchoring 20(R)-Ginsenoside Rg3 onto cellulose nanocrystals to increase the hydroxyl radical scavenging activity. ACS Sustainable Chem Eng 2017;5:7507-13. https://doi.org/10.1021/acssuschemeng.6b02996. 
  33. Serrano G, Almud'ever P, Serrano JM, Milara J, Torrens A, Exposito ' I, et al. Phosphatidylcholine liposomes as carriers to improve topical ascorbic acid treatment of skin disorders. Clin Cosmet Invest Dermatol 2015;8:591-9. https://doi.org/10.2147/CCID.S90781. 
  34. Zhang H, Wang T, He W, Wang J, Li X. Irinotecan-loaded ROS-responsive liposomes containing thioether phosphatidylcholine for improving anticancer activity. J Drug Deliv Sci Technol 2022;71:103321. https://doi.org/10.1016/j.jddst.2022.103321. 
  35. Du XJ, Wang JL, Iqbal S, Li HJ, Cao ZT, Wang YC, et al. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater Sci 2018;6. https://doi.org/10.1039/c7bm01096f. 
  36. Cui W, Cheng L, Hu C, Li H, Zhang Y, Chang J. Electrospun poly(L-lactide) fiber with ginsenoside Rg3 for inhibiting scar hyperplasia of skin. PLoS One 2013;8:e68771. https://doi.org/10.1371/JOURNAL.PONE.0068771. 
  37. Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids 2016;201:28-40. https://doi.org/10.1016/j.chemphyslip.2016.10.005. 
  38. Jeon JH, Lee J, Choi MK, Song IS. Pharmacokinetics of ginsenosides following repeated oral administration of red ginseng extract significantly differ between species of experimental animals. Arch Pharm Res (Seoul) 2020;43:1335-46. https://doi.org/10.1007/S12272-020-01289-0. 
  39. Peng M, Li X, Zhang T, Ding Y, Yi Y, Le J, et al. Stereoselective pharmacokinetic and metabolism studies of 20(S)- and 20(R)-ginsenoside Rg3 epimers in rat plasma by liquid chromatography-electrospray ionization mass spectrometry. J Pharm Biomed Anal 2016;121:215-24. https://doi.org/10.1016/J.JPBA.2016.01.020. 
  40. Xie HT, Wang GJ, Sun JG, Tucker I, Zhao XC, Xie YY, et al. High performance liquid chromatographic-mass spectrometric determination of ginsenoside Rg3 and its metabolites in rat plasma using solid-phase extraction for pharmacokinetic studies. J Chromatogr, B: Anal Technol Biomed Life Sci 2005;818:167-73. https://doi.org/10.1016/j.jchromb.2004.12.028. 
  41. Fan H, Sun XL, Yaliu S, Lu MM, Xue F, Meng XS, et al. Comparative pharmacokinetics of ginsenoside Rg3 and ginsenoside Rh2 after oral administration of ginsenoside Rg3 in normal and walker 256 tumor-bearing rats. Phcog Mag 2016;12:21. https://doi.org/10.4103/0973-1296.176014. 
  42. Won HJ, Kim H Il, Park T, Kim H, Jo K, Jeon H, et al. Non-clinical pharmacokinetic behavior of ginsenosides. J Ginseng Res 2019;43:354-60. https://doi.org/10.1016/j.jgr.2018.06.001. 
  43. Gu Y, Wang GJ, Wu XL, Zheng YT, Zhang JW, Ai H, et al. Intestinal absorption mechanisms of ginsenoside Rh2: stereoselectivity and involvement of ABC transporters. Xenobiotica 2010;40:602-12. https://doi.org/10.3109/00498254.2010.500744. 
  44. Gulnaz A, Chang JE, Maeng HJ, Shin KH, Lee KR, Chae YJ. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. Journal of Pharmaceutical Investigation 2023;53:73-92. https://doi.org/10.1007/s40005-022-00600-z. 
  45. Ahn H, Park JH. Liposomal delivery systems for intestinal lymphatic drug transport. Biomater Res 2016;20:1-6. https://doi.org/10.1186/s40824-016-0083-1. 
  46. Li C, Wang Z, Li G, Wang Z, Yang J, Li Y, et al. Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats. J Ginseng Res 2020;44:222-8. https://doi.org/10.1016/J.JGR.2018.10.001.