• Title/Summary/Keyword: powder method

Search Result 3,680, Processing Time 0.036 seconds

Synthesis of $WS_2$ Solid Lubricant ($WS_2$ 고체 윤활제의 합성)

  • 신동우;윤대현;황영주;김성진;김인섭
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.60-65
    • /
    • 1997
  • The tungsten disulfide $(WS_2)$ solid lubricant was synthesized by two different reaction processes, i.e., the reaction between $CS_2$ gas phase and solid $WO_3$powder, and the vapour phase transport method of tungsten and sulfur in a high vacuum. The chemical and physical characteristics of synthesized $WS_2$powder were analyzed in terms of the average particle size, morphology, crystalline phase etc. in comparison with those of commercial $WS_2$powder. The solid $WO_3$ powder with the average size of 0.2 ${\mu}{\textrm}{m}$ was reacted with $CS_2$gas flowed with$N_2$or 96%$N_2{\times}4%H_2$forming gas for 36 h and 24 h at 90$0^{\circ}C$ respectively. $WS_2$ crystalline phase was then formed through the intermediate phase of .$W_{20}O_{58}$ In the case of vapour phase transport method, the 3.5 wt% iodine was added as a vapour transport reagent into the composition of tungsten and sulfur powders maintaining a constant molar ratio of W:S=1:2.2. The mixture was then heat treated at 85$0^{\circ}C$ for 2 weeks in vacuum. The reaction product obtained showed the average size of 12 ${\mu}{\textrm}{m}$ and the hexagonal plate shape of typical solid lubricant with 2H-$WS_2$crystalline phase.

The Quality Investigation of 6H-SiC Crystals Grown by a Conventional PVT Method with Various SiC Powders

  • Yeo, Im-Gyu;Lee, Tae-Woo;Lee, Won-Jae;Shin, Byoung-Chul;Choi, Jung-Woo;Ku, Kap-Ryeol;Kim, Young-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.61-64
    • /
    • 2010
  • In this paper, we investigate the quality difference of SiC crystals grown by a conventional physical vapor transport method using various SiC powders. While the growth rate was revealed to be dependent upon the particle size of the SiC powder, the growth rate of SiC bulk crystals grown using SiC powder with a smaller particle size (20 nm) was definitely higher than those using lager particle sizes with $0.1-0.2\;{\mu}m$ and $1-10\;{\mu}m$, respectively. All grown 2 inch SiC single crystals were proven to be the polytype of 6H-SiC and the carrier concentration levels of about $10^{17}\;cm^3$ were determined from Hall measurements. It was revealed that the particle size and process method of SiC powder played an important role in obtaining a good quality, high growth rate, and to reduce growth temperature.

Spectrometric Determination of Rhodamine B in Chili Powder After Molecularly Imprinted Solid Phase Extraction

  • Liu, Xiuying;Zhang, Xuan;Zhou, Qian;Bai, Bing;Ji, Shujuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3381-3386
    • /
    • 2013
  • This paper reports a method using molecularly imprinted polymers that are grafted onto the surface of carboxyl-modified multi-walled carbon nanotubes as the solid-phase extraction adsorbents to detect Rhodamine B in chili powder samples. The polymers were characterized by FTIR and TGA. Various parameters which probably influence efficiency of extraction were optimized. The analytical parameters such as precision, accuracy and linear working range were also determined in optimal experimental conditions. And the proposed method was applied to analysis of Rhodamine B in chili powder samples. The limits of detection and quantification were 2.57 and 8.56 ${\mu}g/g$, respectively. The recoveries for analytes were higher than 95% and relative standard deviation values were found to be in the range of 0.83-4.15%. This method was successfully applied for the determination of Rhodamine B.

Powder Synthesis and Sintering Behavior of Hydroxyapatite by Citrate Method (Citrate법을 이용한 수산화아파타이트 분말합성 및 소결특성)

  • 임병일;최세영;정형진;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1003-1011
    • /
    • 1996
  • Hydroxyapatite powder was synthesized by a citrate method, . Char-like precursor composed of Ca8(HPO4)2(PO4)4.5H2O (OCP) and CaCo3 was found via viscous resin-like intermediate by heating the mixed aqueous solution of Ca(NO3)2.4H2O(NH4)2HPO4 and citric acid. Resulted powder was transformed into hydroxyapatite phase by firing over 120$0^{\circ}C$-135$0^{\circ}C$ for 4 hr using the powder calcined at 90$0^{\circ}C$ for 10 hr composed of mostly single hydroxyapatite phase. The sintered densities increased with firing temperature up to 130$0^{\circ}C$ but the highest relative density was about 94% of theoritical value. indicating the presence of closed pores. The maximum 96 MPa of flexural strength was obtained at 120$0^{\circ}C$ firing but the flexural strength showed lower values over the above sintering condition. Vitro test was performed by immersing of two jointed specimens in SBF for seven days and adhesion was observed between two specimens.

  • PDF

Synthesis of $Li_xNi_(0.85)Co_(0.15)O_2$ by the PVA-procursor Method and the Effect of Air Flow During the Pyrolysis

  • 권호진;김근배;김수주;송미영;박선희;권혜영;박동곤
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.508-516
    • /
    • 1999
  • Polycrystalline powder of LixNi0.85Co0.15O2 was synthesized by pyrolyzing a powder precursor obtained by the PVA-precursor method. Coin cells of lithium-ion rechargeable battery were assembled, whose the cathodes were fabricated from the crystalline powders of LixNi0.85Co0.15O2 synthesized by the method. The effect of synthetic variation on the property of the cell was tested by carrying out 100 consecutive cycles of charge-dis-charge on the cells. The property of the cell was largely influenced by the pyrolysis conditions applied for the synthesis of the LixNi0.85Co0.15O2. Depending on whether the pyrolysis was carried out in standing air or in the flow of dry air, the discharge capacity and cycle-reversibility of the cell varied in large extent. When the powder precursor was pyrolyzed in standing air, a minor phase of lithium carbonate was remained in the LixNi0.85Co0.15O2. The carbon containing powder precursor had to be pyrolyzed in the flow of dry air to eliminate the minor phase. In the flow of dry air, the lithium carbonate in the precursor was eliminated over 500-700。C without any prominent heat event. By controlling the flow of air over the precursor during its pyrolysis, particle size could also be altered. The effect of flowing dry air, during first step pyrolysis or during second step heat treatment, on the property of the cell was discussed.

Study on the Dyeability and the Colorfastness of Imported Commercial Raw Indigo Powder Dye on Cotton Fabric (시판 수입 생쪽 분말 염료의 면직물에 대한 염색성 및 염색견뢰도 연구)

  • Yang, Yue;Ahn, Cheun-Soon;Park, Jin-Sung;Li, Longchun
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.4
    • /
    • pp.463-474
    • /
    • 2012
  • The purpose of this research was to find the suitable dyeing method for dyeing cotton fabric into indigo blue color using the raw indigo powder dyes sold in the Korean market. The research focused primarily on the comparison of the non-reduced dyeing method and the reduced dyeing method. The dyeing effects using different dyeing temperatures ($2{\sim}80^{\circ}C$) and different concentrations of reducing agent and alkali were also investigated. It was found that the reduced dyeing method must be used for dyeing cotton into indigo blue color using the commercial raw indigo powder dyes. The best result was obtained by $20^{\circ}C$ dyeing with the $40^{\circ}C$ dyeing giving a comparable result. The intensity of the blue color could be enhanced by increasing the alkali concentration. The non-reduced dyeing could not dye cotton fabric into indigo blue color at any given dyeing temperatures ($2{\sim}80^{\circ}C$). The reduce-dyed cotton fabrics showed a gradual color change upon repeated washing and extended sunlight exposure, the most color change occurring after the first two washing cycles and the first 5 hours of sunlight exposure. The standard tests of colorfastness showed that the reduce-dyed cotton fabrics had good to excellent colorfastness whereas the colorfastness of the non-reduce-dyed cotton fabrics were mostly poor.

Design of ceramics powder compaction process parameters (Part Ⅱ : Optimization) (세라믹스 분말 가압 성형 공정 변수설계(2부: 최적화))

  • Kim J. L.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • In this study, the process parameters in ceramics powder compaction are optimized for getting high relative densities of ceramic products. To find optimized parameters, the analytic models of powder compaction are firstly prepared by 2-dimensional rod arrays with random green densities using a quasi-random multiparticle array. Then, using finite element method, the changes in relative densities are analyzed by varying the size of Al₂O₃ particle, the amplitude of cyclic compaction, and the coefficient of friction, which influence the relative density in cyclic compactions. After the analytic function of relative density associated process parameters are formulated by aid of the response surface method, the optimal conditions in powder compaction process are found by the grid search method. When the particle size of Al₂O₃ is 22.5 ㎛, the optimal parameters for the amplitude of cyclic compaction and the coefficient of friction are 75 MPa and 0.1103, respectively. The maximum relative density is 0.9390.

A Study on the Fabrication and Mechanical Properties of $WC-Co-Al_2O_3$ Ceramic Composites Using WC Powders Synthesized by SHS Method and Commercial WC Powders (SHS 화학로법에 의해 합성된 WC 분말과 상용 WC 분말을 이용한 $WC-Co-Al_2O_3$ 세라믹 복합체의 제조 및 그 기계적 특성에 관한 연구)

  • Lee, K.R.;Cho, D.H.;Lee, H.B.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1392-1400
    • /
    • 1995
  • WC-10wt%Co-Al2O3 ceramic composites, using both the SHS (Self-propagating High Temperature Synthesis) synthesized WC powder method and commercial WC powder, were prepared by varing WC-Co/Al2O3 vol% ratio and sintering temperature (1350℃∼1650℃) for 1 hr in Ar atmosphere. Mechanical characterization has been investigated by Instron meterial testing system and Vicker's hardness test. Compositional and structural chracterizations were carried out by energy-dispersive analysis of X-ray (EDAX) data and scanning electron microscope (SEM). Electrical characterization was carried out by the electrical resistivity measurement using 4-point probe method. As sintering period increased and Al2O3 contents decreased in WC-10wt%Co-Al2O3 ceramic composite, shrinkage and relative density increased, resulting in maximum values at 1600℃. Also the major matrix phase changed with increasing Al2O3 content from 0 to 100 vol%. It was also identified by SEM, EDAX, and electrical resistivity measurement. Based on the results of analysis of flexural strength, toughness and hardness, the mechanical properties of WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were better than those WC-10wt%Co-Al2O3 ceramic composites using commercial WC powder because WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were sintered very well due to small initial particle size. By the addition of 40 vol% Al2O3 [60(WC=10wt%Co)-40Al2O3], it was possible to obtain a proper candidate as a superalloy.

  • PDF

The Powder Synthesis of (Bi,Pb)-2223 System Superconductor by Oxalate Method and Thick Film Preparation (옥살산염법에 의한 (Bi, Pb)-2223계 초전도 분말 합성과 후막 제조)

  • 하성원;김형태;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1083-1091
    • /
    • 1997
  • As one of the chemical powder fabrication methods, the powder preparation method by using oxalate has the following advantages; (1) easy to control the chemical stoichiometry, (2) easy to fabricate homogeneous and fine particles, and (3) easy to be thermaly decomposed at low temperature. In the present study, the initial morphology and size distribution of the powder were controlled and the homogeniaty was improved. By carefully controlling the pH with NH4OH, the Bi(Pb)-Sr-Ca-Cu-O superconducting powders were prepared and investigated for their properties. The microstructures and the superconducting properties of the pelletized samples were investigated. Also, the microstructures and electrical properties of the samples prepared by tape casting method were investigated. The fabricated powders were spherical with less than 400 nm, but most of them were agglomerated to be 1~3 ${\mu}{\textrm}{m}$ in size. The critical temperature of the pelletized sample annealed at 84$0^{\circ}C$ for 72 hours in air was 110K. And the critical currents of annealed samples in air prepared by tape casting process for 24 hours and 72 hours were 0.6 A (Jc=600A/$\textrm{cm}^2$) and 1.9A (Jc=1, 900A/$\textrm{cm}^2$) respectively.

  • PDF

Preparation of YBa2Cu3O6+x Superconducting Wires Prepared by Pyrophoric Synthetic Technique (발화합성법에 의한 YBa2Cu3O6+x 초전도 선재의 제조)

  • Yang, Suk-Woo;Lee, Young-Min;Kim, Young-Soon;Park, Jeong-Shik;Kim, Chan-Joong;Hong, Gye-Won;Shin, Hyung-Shik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1011-1017
    • /
    • 1998
  • $YBa_2Cu_3O_{6+x}(Y123)-Ag$ high-Tc superconducting wires were fabricated by plastic extrusion technique using pyrophoric synthetic and mechanical mixing powder with and without Ag addition(20 wt.%). This method involves powder preparation, plastic paste making, die extrusion, binder burn-out and the sintering process. In order to fabricate a good-quality superconducting body, it is required to use homogeneous and fine-size power as a starting materials. $Y_2O_3-BaCO_3-CuO$ precursor powders with/without Ag addition were prepared both by pyrophoric synthetic(PS) and mechanical mixing(MM) method of raw powders. The formation kinetics of the powder mixtures into Y123 phase was investigated at various temperatures and times in air atmosphere. The powder prepared by PS method was more easily converted into a Y123 phase than the MM powder. The fine size and good chemical homogeneity of the powder prepared by PS method is attributable to the fast formation into a Y123 phase. The critical current density($J_c$) of the Y123-Ag superconducting wires made by plastic extrusion method were in the range of $150A/cm^2{\sim}230A/cm^2$. depending on the charateristics of starting material powders. $J_c$ of the wire prepared by pyrophoric synthetic powder with 20 wt.% Ag addition was $230A/cm^2$.

  • PDF