Design of ceramics powder compaction process parameters (Part Ⅱ : Optimization)

세라믹스 분말 가압 성형 공정 변수설계(2부: 최적화)

  • Kim J. L. (Department of Precision Mechanical Engineering, Graduate School in Hanyang University) ;
  • Keum Y. T. (Division of Mechanical Engineering, Hanyang University)
  • 김정래 (한양대학교 일반대학원 정밀기계공학과) ;
  • 금영탁 (한양대학교 기계공학부)
  • Published : 2005.02.01

Abstract

In this study, the process parameters in ceramics powder compaction are optimized for getting high relative densities of ceramic products. To find optimized parameters, the analytic models of powder compaction are firstly prepared by 2-dimensional rod arrays with random green densities using a quasi-random multiparticle array. Then, using finite element method, the changes in relative densities are analyzed by varying the size of Al₂O₃ particle, the amplitude of cyclic compaction, and the coefficient of friction, which influence the relative density in cyclic compactions. After the analytic function of relative density associated process parameters are formulated by aid of the response surface method, the optimal conditions in powder compaction process are found by the grid search method. When the particle size of Al₂O₃ is 22.5 ㎛, the optimal parameters for the amplitude of cyclic compaction and the coefficient of friction are 75 MPa and 0.1103, respectively. The maximum relative density is 0.9390.

본 연구에서는 세라믹 제품의 고밀도를 얻기 위해 분말 압축 성형 공정 변수의 최적화가 수행되었다. 이를 위해 먼저 임의의 초기 밀도를 갖는 분말 성형체를 모델링하였다. 그리고 반복 가압 성형 공정시 상대밀도에 영향을 주는 Al₂O₃ 입자의 크기, 반복 가압 진폭 크기, 그리고 마찰계수에 따른 상대밀도의 변화를 유한요소법으로 해석하였다. 유한요소 해석 결과를 반응 표면법으로 수식화한 후, 격자 탐색법으로 가압 성형 공정 변수의 최적 조건을 찾았다. 입자의 크기가 22.5 ㎛, 반복 가압 진폭이 75 MPa, 마찰계수가 0.1103인 경우에 상대 밀도 값이 0.9390으로 최대가 되었다.

Keywords

References

  1. S.C. Jung and Y.T. Keum 'Design of ceramics powder compaction process parameters (part I : finite element analysis)', Journal of the Korean Crystal Growth and Crystal Technology, Submitted
  2. G. Jiang, G.S. Daehn, J.J. Lannutti, Y. Fu and R.H. Wagoner, 'Effects of lubrication and aspect ratio on the consolidation of metal matrix composite under cyclic pressure', Acta Mater 49 (2001) 1417
  3. G. Jiang, G.S. Daehn and R.H. Wagoner, 'Inclusion particle size on the cyclic compaction of powder composites', Scripta Mater 44 (2001) 1117 https://doi.org/10.1016/S1359-6462(01)00659-5
  4. C.M. Kong and J.J. Lannutti, 'Effect of agglomerate size distribution on loose packing fraction', Journal of the American Ceramic Society 83(9) (2000) 2183 https://doi.org/10.1111/j.1151-2916.2000.tb01533.x
  5. B.J. Briscoe and S.L Rough, 'The effect of wall friction on the ejection of pressed ceramic parts', Powder Technology 99 (1998) 228 https://doi.org/10.1016/S0032-5910(98)00113-2
  6. K.T. Kim, G.S. Son and J. Suh, 'Densification of aggregated alumina powder under cyclic compaction', Journal of Korean Ceramic Society 29(2) (1992) 136
  7. D.W. Shin, G.D. Kim, S.S. Park, C.S. Lim and S.W. Lee, 'Optimization of powder compaction parameters for the pressureless sintered ZTA', Journal of Korean Association of Crystal Growth 8(2) (1998) 356
  8. G.E.P. Box and K.B. Wilson, 'On the experimental attainment of optimum condition', Journal of the Royal Statistical Society, Series B 13 (1951) 1
  9. W.J. Roux, N. Stander and R.T. Haftka, 'Response surface approximations for structural optimization', Int. J. Number. Meth. Engng. 42 (1998) 517 https://doi.org/10.1002/(SICI)1097-0207(19980615)42:3<517::AID-NME370>3.0.CO;2-L
  10. G. Venter and R.T. Haftka, 'Construction of response surface approximations for design optimization', AIAA Journal 36(12) (1998) 2242 https://doi.org/10.2514/2.333
  11. S.H. Park, Moderm Method of Experiment, Minyoung Ltd. (1991)
  12. S. Turenne and P.E. Mongeon, 'Comparison of the properties of aluminum matrix composites produced by compaction and powder injection molding', Advances in powder metallurgy & particulate materials (1995) 155