• 제목/요약/키워드: powder admixture

검색결과 148건 처리시간 0.025초

폐내화물 미분말 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향 (Influence of Replacement Ratio of Wasted Refractory Powder on the Properties of Mortar using Blast Furnace Slag and Recycled Aaggregate)

  • 송원루;백철;김민상;이제현;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.38-39
    • /
    • 2016
  • In this research, the possibility of wasted refractory powder pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory powder was replaced 10 %.

  • PDF

Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC

  • Djamila, Boukhelkhal;Othmane, Boukendakdji;Said, Kenai;El-Hadj, Kadri
    • Advances in concrete construction
    • /
    • 제6권1호
    • /
    • pp.69-85
    • /
    • 2018
  • In order to provide sufficient stability and resistance against bleeding and segregation during transportation and placing, mineral admixtures are often used in self-compacting concrete mixes (SCC). These fine materials also contribute to reducing the construction cost and the consumption of natural resources. Many studies have confirmed the benefits of these mineral admixtures on properties of SCC in standard curing conditions. However, there are few published reports regarding their effects at elevated curing temperatures. The main objective of this study is to investigate the effect of three different mineral admixtures namely limestone powder (LP), granulated blast furnace slag (GS) and natural pozzolana (PZ) on mechanical properties and porosity of SCC when exposed to different curing temperatures (20, 40, 60 and $80^{\circ}C$). The level of substitution of cement by mineral admixture was fixed at 15%. The results showed that increasing curing temperature causes an improvement in performance at an early age without penalizing its long-term properties. However the temperature of $40^{\circ}C$ is considered the optimal curing temperature to make economical and high performance SCC. On the other hand, GS is the most suitable mineral admixture for SCC under elevated curing temperature.

폐 TFT-LCD 유리분말을 혼입한 고강도 콘크리트 파일의 특성 (The Characteristics of P.H.C Pile using Admixture by Waste TFT-LCD Glass Powder)

  • 전성환;민경산;소양섭
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.419-425
    • /
    • 2010
  • In order to examine the P.H.C pile raw material using glass forming ceramic. The used materials is ordinary portland cement, waste TFT-LCD glass powder and reactive agent(Ca$(OH)_2$). The first experiment is characteristics analysis of the waste TFT-LCD glass powder, For the second experiment is mortar and concrete compressive strength for using of the concrete file raw material for waste TFT-LCD glass powder. The results of experiment showed that the substitution ratio of 10% waste TFT-LCD glass powder and 1% reactive agent(Ca$(OH)_2$) was excellent at a point of view for the physical characteristic. The study's most important finding is that the recycling of waste TFT-LCD glass powder.

TFT-LCD 폐유리 사용 고강도 콘크리트 파일의 특성 (Properties of PHC Piles Using TFT-LCD Waste Glass)

  • 이승헌;이승태;민경산;전성환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.319-320
    • /
    • 2010
  • 시멘트 대체재로서 폐 TFT-LCD 유리분말을 사용하여 고강도 파일 콘크리트의 기본적인 물성을 조사하였다. 본 연구를 통하여 얻은 데이터를 근거로 폐 TFT-LCD 유리분말이 고강도 콘크리트 파일 콘크리트용 혼화재로서 사용이 가능성이 있음을 확인하였다.

  • PDF

산업부산물의 혼입에 따른 콘크리트 특성의 실험적 연구 (An Experimental Study On the Properties blended with industrial by products Using Mineral Admixture)

  • Kim, Dongbaek;Jun, Kyeongbae
    • 한국재난정보학회 논문집
    • /
    • 제10권2호
    • /
    • pp.238-243
    • /
    • 2014
  • 최근 세계적으로 환경오염이 심각해짐에 따라 환경보호의 일환으로 자원 재활용과 연관하여 시멘트의 대체 재료로서 산업부산물에 대한 관심이 높아졌으며, 특히 최근 경제성, 치수안정성 및 신뢰성이 우수한 고품질의 콘크리트 개발이 크게 요구되고 있는데 이를 증명하기 위한 실험을 수행한 결과는 다음과 같다. (1) 고로슬래그 미분말과 플라이애쉬 같은 혼화재를 혼합하여 사용할 경우 유동성이 개선되고 수화열 감소하는 효과가 있다. (2) 고로슬래그 미분말과 플라이애쉬 같은 혼화재의 량을 증가하면 장기강도 증진되고 건조수축이 감소한다, (3) 고로슬래그 미분말과 플라이애쉬 같은 혼화재의 혼입량을 증가시키면 수밀성 및 내구성 향상 등에 효과가 있는 것으로 나타나고 있다. 본 연구에서는 고로슬래그 미분말 및 플라이애쉬의 각각의 치환율과 혼입에 따른 콘크리트의 공학적 특성 및 혼입량의 임계치를 추정하고 현장 적용가능성을 검증하는데 목적이 있다.

폐도자기분말의 혼입에 따른 시멘트 모르타르의 특성 (The properties of cement mortar using waste pottery powder)

  • 이화영;김득모;문경주;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.785-788
    • /
    • 2008
  • 우리나라의 도자기 제조업체에서는 전국적으로 연간 5,000톤 이상의 많은 도자기 폐기물이 발생하고 있다. 이들 폐기물은 경제적 이득과 환경 보전의 차원에서 재활용 방안이 시급히 모색되어야 한다. 따라서 본 연구에서는 폐도자기의 재활용 방안으로 콘크리트 2차제품의 시멘트 혼합재로 이용하여 폐도자기의 활용성을 검증하고자 기초실험을 진행 하였다. 실험결과 시멘트 혼합재로 사용된 폐도자기분말을 10%의 치환했을 경우 탈형강도(압축강도)을 증가시켜 주었다. 또한 GBFS와 WP를 OPC 혼합재로 사용하였을 경우 WP가 더 우수한 효과를 보였다.

  • PDF

Evaluation of Mixing Conditions for the Production of Optimized High Flowing Concrete

  • Kim, Sang-Chel
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.79-88
    • /
    • 1999
  • Most difficulties of inducing high fluidity on the concrete mixing design with a strength range of 210 to 240kg/$\textrm{cm}^2$ result from the segregation of aggregates due to the shortage of cementitious binders. To solve the problem, this study concentrated on finding the optimized amount of binder material which does not affect the concrete strength and is also economical. Also there were studies on the use of intermediate sized aggregates to avoid the gap-grading between coarse and fine aggregates so that the material segregation in high flowing concrete was and minimalized the fluidity and penetration capacity of the reinforcing bars was enhanced. Throughout the parametric study with respect to water/binder ratio. superplasticizer. replaceable mineral admixture, the size of coarse aggregate and mixing methods, the effect of each constituent on the characteristics of high flowing concrete could be observed. As a result or partially using stone powder or an intermediate class of aggregate (max. diameter 13mm) . it was fund that the fluidity of concrete significantly increased without material segregation and any change of compressive strengths. It was also proved in this study that proper mixing time and speed are significant factors influence the performence of high flowing concrete.

  • PDF

지하구조물 취약부에 적용한 천연 무기질계 분말형 혼화제의 누수저감효과 (The Leakage Reduction of Natural Inorganic Powder Compound Applying Subsurface Structural Weak Part)

  • 윤성환;서현재;이혜령;박진상;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.19-22
    • /
    • 2011
  • For underground structures that are exposed to environmental conditions, the declination of the durability of concrete occurs easily because of leakages from high hydraulic pressure and the frequent contact of water due to environmental factors. Therefore this study is to confirm that the leakage reduction of natural inorgnic powder compound applying subsurface structural weak part and make the performance improvement of concrete as an objective. The test was done by making the rebar, flat tie, nail and film infiltration and each of its water tank and cylindrical test body then after pouring water to each of the test body, the test observe the change of the water tank surface absorbed condition and leakage of each specimen with respect to time. As a conclusion, the test was observed that this water proofing admixture has better watertightness from the beginning of the setting time(when it hardens), the ettringite and the thaumasite generates a large quantity of hydration products that controls the formation in a large opening and the CSH produced by pozzolan reaction makes a dent at this opening.

  • PDF

급결제를 이용한 EVA 분말수지 혼입 폴리머 시멘트 모르타르의 초기강도 특성 (Early Strength Properties of EVA Polymer Powder-Modified Mortars with Quick Setting Agent)

  • 조영철;최낙운;이철웅;양석우;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.309-312
    • /
    • 2005
  • Admixture compounds for shortening setting time and accelerating early strength development of EVA polymer powder-modified mortars were made by mixing various quick setting agents. As a result, the quick setting agents contribute to strength development of the mortars in the early curing age of 168h or less. In the viewpoint of early strength development of EVA polymer powder-modified mortars, an quick setting agent content of 20$\%$ is recommended. Early strength of EVA polymer powder-modified mortars expresses the excellent strength with 5$\%$, 10$\%$ of rates of polymer mixing. The rate of polymer mixing was able to be adjusted and flexural strength which is a predeterminded initial strength was also able to satisfy 3MPa(s).

  • PDF

폐콘크리트 순환자원을 이용한 건설재료의 특성연구 (A Experimental Study on the Construction Material Using the Circulation Resources)

  • 홍세화;손기상;최재남
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.41-46
    • /
    • 2010
  • This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. This result has same decreasing proportion to tensile strength of the material. Resistant capacity change of beam varying with recycled powder mixture has been decreased down to 60% of normal concrete bean capacity, while there are 80% decrease of material strength. But strength and capacity change has same consistent decrease ratio. It is found that recycled powder with approximately 15% unit concrete volume can be replaced with cement in reasonable admixture mixing condition.