• Title/Summary/Keyword: powder admixture

Search Result 148, Processing Time 0.027 seconds

Remedy effects of dandelion and milk thistle on fatty liver hemorrhagic syndrome in laying hens

  • Young-Joon Cho;Jeong-Ran Min;Jeong-Hee Han;Sang-Hee Jeong
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Fatty liver hemorrhagic syndrome (FLHS) is a metabolic disorder found in caged layer hens and causes reduced egg production and sudden death. Dandelion (Taraxacum coreanum, TC) and milk thistle (Cirsium japonicum var. ussuriense, CJ) are well known wild herbs inhabiting Korean peninsula and presenting antioxidative effects. This study investigated alleviate effects of these herbal mixture (6:4, w/w) composed of dried powder of TC and CJ against fatty liver in laying hens. The herbs mixture 5.0, 10.0, 20.0 or 40.0 g/kg feed was provided via feed admixture for 3 weeks to laying hens having FLHS. FLHS was induced by intramuscular injection of β-estradiol (2 mg/kg bw) 2 times per week for 3 weeks and supply with high caloric feed. Egg production rate was reduced from 76.2% at pre-treatment to 49.4% at 1 week and further decreased according to β-estradiol treatment. Increment of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (T-Chol) and total bilirubin (T-Bil) and decrement of serum superoxide dismutase (SOD) and glutathione peroxidase (GPX) with fatty liver were found by the treatment of β-estradiol. Supplementation of TC and CJ mixture via feed admixture recovered the reduction of egg production and attenuated serological changes and gross and pathological lesions of fatty liver with the best amelioration effects at 5 and 10 g TC and CJ mixture per kg feed. In conclusion, TC and CJ mixture attenuates FLHS by means of antioxidative effects. Further mechanistic study is required to explain TC and CJ's amelioration effects against FLHS in laying hens.

Evaluation on the Characteristics of Weak Soil Adjacent to Chemical Compaction Pile of Using Bottom Ash (Bottom Ash를 활용한 Chemical Compaction Pile의 주변 지반 개량 특성 평가)

  • Kim, Sang-Chel;Park, Kyung-Tae;Sung, Ik-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.163-170
    • /
    • 2007
  • To evaluate on the applicability of Chemical Compaction Pile (CCP) method to weak soil improvement, two kinds of testing chambers were fabricated and the changes of water content and shear stress associated with soil types, ages and distances from the center of pile were measured with different mixing proportions of CCP such as bottom ash, lime powder and added admixture. As results of test, it was noted that water content and shear stress of ground are mainly affected by the amount of lime powder and increase of the amount corresponds to rapid improvement of soil. And the improvement depended greatly on the types of soil also. It was finally found that CCP developed can be applicable to bearing pile as well as soil improvement since CCP has a bearing capacity enough to carry loads.

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.

Properties on the Shrinkage of High Performance Concrete Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 고성능 콘크리트의 수축특성)

  • Han, Cheon-Goo;Kim, Sung-Wook;Koh, Kyoung-Taek;Pei, Zheng-Lie
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.785-793
    • /
    • 2003
  • This study is intended to analyze the effectiveness of expansive additive, shrinkage reducing agent and combination of the two to reduce the autogenous and drying shrinkage of high performance concrete using mineral admixture such as fly ash, blast furnace slag powder and silica fume. According to results, when expansive additive and shrinkage reducing agent are mixed within an appropriate mixing ratio, fluidity and air content are not influenced, and the enhancement of compressive strength is favorable at the age of 91 and 180days. At the mixing ratio of expansive additive of 5% and 10%, the autogenous and drying shrinkage is reduced by 32∼68% and 25∼49% respectively in comparison with plain concrete. And they are reduced by 18∼34% and 16∼26% respectively at the mixing ratio of shrinkage reducing agent of 0.5% and 1.0%, compared with plain concrete. The mixture of EA-SR combined with expansive additive and shrinkage reducing agent is most effective for reduction of shrinkage. Therefore, it is considered that the using method in combination with expansive additive and shrinkage reducing agent is effective to reduce the shrinkage of high performance concrete using mineral admixture such as fly ash, blast slag powder and silica fume.

A Study on Comparison of Density Test Methods for Quality Control of Cement and Mineral Admixture (시멘트 및 혼화재의 품질관리를 위한 밀도 시험방법 비교 연구)

  • Jae-Seung, Lee;Sang-Kyun, Noh;Cheol, Park;Hong-Chul, Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.435-442
    • /
    • 2022
  • In this study, the density of KS L 5110 was compared with that of gas pycnometer and electronic densimeter for efficient density management of cement, blast furnace slag powder and fly ash. Correlation and usability according to the test method were reviewed, and based on the results of the experiment, the availability of alternative test methods was analyzed. As a result of the density test according to test methods, the density of cement, blast furnace slag powder and fly ash tended to decrease in the order of gas pycnometer, KS L 5110 and electronic densimeter. Because the volume range of the sample to be evaluated is different depending on test methods. The coefficient of determination R2 was in the range of 0.71 to 0.93, and the correlation according to test methods showed a relatively good correlation. If correction is applied through correlation, it is analyzed that alternative test methods can be used. As a result of the usability review considering the test procedure, measurement time and coefficient of variation, the gas pycnometer had the simplest test procedure and good reliability. In addition, it is expected that the reproducibility between the testers is relatively high because the skill is not greatly required.

The Fundamental Study on Properties of Concrete Using the Garnet with Industrial Wastes (산업부산물인 가네트를 이용한 콘크리트의 성질개선에 관한 기초적 연구)

  • Lim, Byoung-Ho;Park, Jung-Min;Kim, Tae-Gon;Kim, Wha-Jung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.183-190
    • /
    • 1999
  • This paper investigated the possibility of appling to concrete through fundamental experiment for garnet, which was industrial wastes generated in kyung pook region, in aspects of development of new materials and recycling of industrial wastes due to shortage of natural resources. Consequently, garnet powder showed the possibility of admixture as showed in the chemical composition because the content of silica and alumina in relation to pozzolanic activity was about 50%. The time of setting was more or less diminished as the increasing of replacement ratio of garnet. In flow test, flow values tended to increase to some degree as the increasing of replacement ratio of garnet. Therefore, application of garnet was expected to improve the workability of concrete. The compressive strength of mortar replaced by garnet was respectively increased as compared with plain mortar and the maximum strength was showed in replaced by 10%, however a little different to the change of W/B ratio. Also, the possibility of admixture to reduce the amount of cement and to improve the property of concrete was showed as the strength of mortar replaced by garnet was comparable to that by existing admixture(silica fume, fly-ash).

Properties of Hydration Heat of High-Strength Concrete and Reduction Strategy for Heat Production (고강도 콘크리트의 수화열 특성 및 발열 저감대책에 관한 연구)

  • Jaung, Jae-Dong;Cho, Hyun-Dae;Park, Seung-Wan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • Recently, the interest and demand for large-scale buildings and skyscrapers have been on the rise, and the performance of concrete is an area of high priority. Securing 'mass concrete and high strength concrete' is very important as a key construction technology. For high strength concrete, the high heat of hydration takes place inside the concrete because of the vitality of hydration in cement due to the large amount of powder, and leads to problems such as an increase of thermal stress due to the temperature difference with the outside, which results in cracks and slump loss. For this reason, measures to solve these problems are needed. This study aims to reduce the hydration heat of high strength concrete to control the hydration heat of mass concrete and high strength concrete, by replacing the type of admixture, The purpose of this study is to control the hydration heat of high strength concrete and mass concrete. Our idea for this purpose is to apply not only the types and contents of admixture but also incorporation mixing water to ice-flake. As a result of the test, the use of blast furnace slag and fly ash as admixture, and the use of ice-flake as mixing water can improve the liquidity of concrete and reduce slump loss. Significantly dropping the maximum temperature will contribute greatly to reducing cracks due to hydration heat in mass concrete and high strength concrete, and improve quality.

A Study on the Estimation of Adhesive Stability of Organic.Inorganic Mixed Tile Bond to Ondol-Heating Floor System (온돌난방 바닥에 적용하기 위한 유기.무기질 혼합계 타일접착제 종류에 따른 부착 안정성 평가연구)

  • Jung, Yang-Hee;Jung, Eun-Hye;Seo, Sin-Seok;Jeong, Jae-Soo;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05c
    • /
    • pp.99-102
    • /
    • 2009
  • This paper is to present the performance data for pressure setting method using some tile bonds for application on the Ondol-Heating floor system. For this purpose, powder and liquid tile bonds(Organic.Inorganic mixed tile bonds) were compared with the conventional tile cement for pressure setting method in the sight of the adhesive stability of porcelain tile. It tested for tiles after 14, 28days under standard condition and severe conditions. The severe conditions were water immersion and heat ageing($70^{\circ}C$). Another experimental factors concerned tile bond properties such as mixing ratio(in case of using liquid admixture), open time, which are supposed to affect the tensile strength of tile, were studied and discussed through the experiments.

  • PDF

The Effect on Latent Hydraulic Property of the Blast-furnace Slag by Alkali Activator (알칼리 자극제가 고로슬래그의 잠재수경성에 미치는 영향)

  • Lee, Seung-Han;Park, Jeong-Seob;Jung, Yong-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.929-934
    • /
    • 2001
  • This study aimed to examine the cause of latent hydraulic property manifestation of ground granulated blast-furnace slag(GGBFS) using different alkali activators in pH, type and quantity. According to the experimental result, the higher pH value accelerated lastly latent hydraulic property and the early stage strength of GCBFS was ranked as activators with the higher pH, in an order of NaOH, $Ca(OH)_{2}$ and $Na_{2}$$Co_{3}$. Also, NaOH had accelerated latent hydraulic property of GGBFS, which had 40~50% of the 3 and 7 days compressive strength of base mortar in case of using 10% of powder-weight. In the case of 30% of GGBFS substitution with annexing 2.5% $Ca(OH)_{2}$, the compressive strength on the 3 and 7 days of the early-age, was increased to 5~10% than that of the same admixture with no activator. With annexing 5.0% $Ca(OH)_{2}$, the strength was increased to 10~20%. Although activator NaOH was effective on the manifestation of latent hydraulic property, it caused cement mortar compressive strength decrease by enlarging pore diameter.

  • PDF

The Study of Physical Properties of Fly Ash Concrete Using Activator (자극제를 사용한 플라이애쉬 콘크리트의 물리적 특성에 관한 연구)

  • Park, Jong-Ho;Kim, Jung-Bin;Won, Eun-Mi;Park, Bong-Soon;Lee, Joung-Ah;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.565-568
    • /
    • 2008
  • Because of low early compressive strength, the usage of fly ash is subject to restriction in comparison with blast-furnace slag powder. Therefore, high amount of fly ash is reclaimed in landfill in face of better economical efficiency and more production. In this paper, the primary aim is to determine to what the basic material characteristics of fly ash concrete is affected by activator, the second aim is to check a possibility of increase in fly ash application. This study show that compared with fly ash concrete using general admixture, fly ash concrete using activator have higher early compressive strength under similar slump, air content, loss. If additional study will inspect performance of activator in various factor, expansion of application of fly ash concrete using activator can be possible.

  • PDF