• Title/Summary/Keyword: powder X-ray diffraction

Search Result 1,001, Processing Time 0.028 seconds

Structural and Magnetic Properties of the Brownmillerite $Ca_2Al_xFe_{2-x}O_5$ System

  • 김귀야;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.934-938
    • /
    • 1995
  • A series of solid solutions in the Ca2AlxFe2-xO5 (x=0.00, 0.50, 0.66, 1.00 and 1.34) system with brownmillerite structure has been synthesized at 1100 ℃ under an atmospheric air pressure. The solid solutions are analysed by powder x-ray diffraction analysis, Mohr salt titration, thermal analysis, and Mossbauer spectroscopic analysis. The x-ray diffraction analysis assigns the compositions of x=0.00 and 0.50 to the space group Pcmn and those of x=0.66, 1.00, and 1.34 to the Ibm2. Mo&ssbauer spectra have shown the coordination state and disordering of Al3+ and Fe3+ ions. The substituting preference of Al3+ ions for the tetrahedral site decreases with increasing x value. Magnetic susceptibility of the system has been measured in the temperature range of 5 K to 900 K. The solid solutions of the compositions of x=0.00, 0.50 and 0.66 have shown a thermal hysteresis and the thermoremanent magnetization gap decreases with increasing x value in the above systems. However the compositions of x=1.00 and 1.34 do not show the hysteresis. The exchange integral is calculated from Fe3+ ion occupancy ratio. The integral decreases with x value and thus the magnetic transition temperature decreases with the increasing x value.

Layered Metal Hydroxides Containing Calcium and Their Structural Analysis

  • Kim, Tae-Hyun;Heo, Il;Paek, Seung-Min;Park, Chung-Berm;Choi, Ae-Jin;Lee, Sung-Han;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1845-1850
    • /
    • 2012
  • Layered metal hydroxides (LMHs) containing calcium were synthesized by coprecipitation in solution having two different trivalent metal ions, iron and aluminum. Two mixed metal solutions ($Ca^{2+}/Al^{3+}$ and $Ca^{2+}/Fe^{3+}$ = 2/1) were added to sodium hydroxide solution and the final pH was adjusted to ~11.5 and ~13 for CaAl-and CaFe-LMHs. Powder X-ray diffraction (XRD) for the two LMH samples showed well developed ($00l$) diffractions indicating 2-dimensional crystal structure of the synthesized LMHs. Rietveld refinement of the X-ray diffraction pattern, the local structure analysis through X-ray absorption spectroscopy, and thermal analysis also confirmed that the synthesized precipitates show typical structure of LMHs. The chemical formulae, $Ca_{2.04}Al_1(OH)_6(NO_3){\cdot}5.25H_2O$ and $Ca_{2.01}Fe_1(OH)_6(NO_3){\cdot}4.75H_2O$ were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Particle morphology and thermal behavior for the synthesized LMHs were examined by field emission scanning electron microscopy and thermogravimetricdifferential scanning calorimetry.

Fabrication of Fe-TiB2 Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis

  • Khoa, H.X.;Tuan, N.Q.;Lee, Y.H.;Lee, B.H.;Viet, N.H.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.221-227
    • /
    • 2013
  • $TiB_2$-reinforced iron matrix composite (Fe-$TiB_2$) powder was in-situ fabricated from titanium hydride ($TiH_2$) and iron boride (FeB) powders by the mechanical activation and a subsequent reaction. Phase formation of the composite powder was identified by X-ray diffraction (XRD). The morphology and phase composition were observed and measured by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The results showed that $TiB_2$ particles formed in nanoscale were uniformly distributed in Fe matrix. $Fe_2B$ phase existed due to an incomplete reaction of Ti and FeB. Effect of milling process and synthesis temperature on the formation of composite were discussed.

Particle Size Characteristics with the Specification of Yeongdong Illite Powder Products (영동 일라이트 분말 제품의 규격에 따른 입도 특성)

  • EunJi Baek;Yu Na Lee;Eun Jeong Kim;Youngseuk Keehm;Hyun Na Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.345-353
    • /
    • 2023
  • This study aimed to investigate the differences in the commercial powder products of the Yeongdong illite based on sales specifications, specifically examining the mineralogical composition, particle size, and chemical composition according to mesh size. The goal was to understand the characteristics of illite powder products and utilize them as a mineralogical database for exploring various applications. Commercial illite powder samples obtained from two mines were subjected to various experiments, including X-ray diffraction (XRD) analysis, laser diffraction particle size analysis, and scanning electron microscopy analysis, X-ray fluorescence analysis. The XRD analysis revealed that the illite powder products from the two mines mainly consisted of illite/muscovite, quartz, and feldspar, indicating similar constituent minerals matching with those of ores for each mine. Laser diffraction particle size analysis indicated the difference in particle size distribution depending on the product specifications, with particle size uniformity tending to increase with increasing mesh sizes. Scanning electron microscopy analysis showed variations in particle shape and size based on specifications. The size of illite particles did not vary significantly with product specifications, with noticeable changes observed mainly in the particle sizes of quartz and feldspar. Furthermore, although there were some differences in chemical composition among the samples from different mines, no significant variations were observed according to specifications. Based on these results, when considering the application of commercial illite powder, it is essential to carefully select it with the consideration of its specifications to account for characteristic variations. The findings of this study present support the great potential of various application fields of commercial illite powder, contributing to industrial utilization and the development of new technologies.

Softening-hardening Mechanisms in the Direct Hot-extrusion of Aluminium Compacts

  • Zubizarreta, C.;Arribas, I.;Gimenez, S.;Iturriza, I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.718-719
    • /
    • 2006
  • Two different commercial aluminium powder grades have been densified by direct hot extrusion. The extrusion temperature was $425^{\circ}C$, with an extrusion ratio of 1:16. Prior to extrusion, some green compacts were pre-sintered ($500^{\circ}C$). The evolution of the extrusion load during the process and the hardness of the final products have been investigated. Additionally, microstructural characterization by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD) was carried out. The obtained results evidence grain refinement. Additionally, inter-metallic precipitation, dynamic recovery and geometric dynamic recrystallization take place depending on some process variables, powder composition, heat treatment, strain $\ldots$

  • PDF

APPLICATION STUDY OF CHEMOINFOMETRICAL NEAR-INFRARED SPECTROSCOPY IN PHARMACEUTICAL INDUSTRY

  • Otsuka, Makoto;Kato, Fumie;Matsuda, Yoshihisa
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.2111-2111
    • /
    • 2001
  • A chemoinfometrical method for evaluating the quantitative determination of crystallinity one polymorphs based on fourie-transformed near-infrared (FT-NIR) spectroscopy was established. A direct comparison of the data with the ones collected from using the and compared with the conventional powder X-ray diffraction method was performed. [Method] The pPure a and g forms of indomethacin (IMC) were prepared by reportedusing published methods. Six kinds of standard samples obtained by physically mixing of a and g forms. After the powder X-ray diffraction profiles of samples have been measured, the intensity values were normalized to against the intensity of silicon powder as the as an external standard. The calibration curves for quantification of crystal content were based upon the total relative intensity of four diffraction peaks from of the form g crystal. FT-NIR spectra of six calibration sample sets were recorded 5 times with the NIR spectrometer (BRAN+LUEBBE). Chemoinfometric analysis was performed on the NIR spectral data sets by applying the principal component regression (PCR). [Results] The relation between the actual and predicted polymorphic contents of form g IMC measured using by the X-ray diffraction method shows a good straight linen linear relation., and it has slope of 0.023, an intercept of 0.131 and a correlation coefficient of 0.986. PCR analyses wereis was performed based on normalized NIR spectra sets offer standard samples of known content of IMC g form. IMC. A calibration equation was determined to minimize the root mean square error of the predictionthe prediction. Figure 1 shows a plot of the calibration data obtained by NIR method between the actual and predicted contents of form g IMC. The predicted values were reproducible and had a smaller standard deviation. Figure 2 shows that the plot for the predicted transformation rate (%) of form a IMC to form g as measured by X-ray diffractomeoy against to those as measured by NIR method. The plot has a slope of 1.296, an intercept of 1,109, and a correlation coefficient of 0.992. The line represents a satisfactory correlation between the two predicted values of form g IMC content. Thus NIR spectroscopy is an effective method for the evaluation to the pharmaceutical products of quantitative of polymorph.

  • PDF

Synthesis of Ultra Eine MnxZn1-xFe2O4(x = 0.69~0.74) Powder and Its Magnetic Properties (초미립 MnxZn1-xFe2O4(x = 0.69~0.74)분말의 제조 및 자기적 성질)

  • Kwak, Jae-Eun;Lee, Wan-Jae
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.449-454
    • /
    • 2002
  • $MnxZn_{1-x}Fe_2O_4$ (x=0.69~0.74) powders synthesized by the thermal decomposition of organic acid salts. The obtained powders were uniform in composition and ultra-fine particle with about 400 nm. The amount of spinel phase of these powders was about 50% in X-ray diffraction patterns. The calcination of powder was carried out at $900^{\circ}C$ for 2 hours in air. After the powders were calcined. the mean size of powder was about 500 nm and the amount of spinel phase was increased over about 65%. The maximum amount of spinel phase was about 75% in the specimen of X=0.72. The magnetic properties of calcined $Mn_{0.72}Zn_{0.28}Fe_2O_4$ powders were the best among the different among the different compositions.

Charge-discharge capacity and AC impedance of $LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) cathode ($LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) 정극의 충방전 용량 및 AC 임피던스 특성)

  • 정인성;위성동;이승우;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.455-458
    • /
    • 2001
  • Spinel $LiMn_{2-y}$$M_{y}$ $O_4$powder was prepared solid-state method by calcining the mixture of LiOH - $H_2O$, Mn $O_2$, ZnO and MgO at 80$0^{\circ}C$ for 36h. To investigate the effect of substitution with Mg, Zn cation, charge-discharge experiments and initial impedance spectroscopy performed. The structure of $LiMn_{2-y}$$M_{y}$ $O_4$crystallites was analyzed from powder X-ray diffraction data as a cubic spinel, space group Fd3m. all cathode material showed spinel phase based on cubic phase in X-ray diffraction. Ununiform which calculated by (111) face and (222) face was constant in spite of the change of y value, except PUf\ulcorner LiM $n_2$ $O_4$. The discharge capacities of the cathode for the cation subbstitUtes $LiMn_{2-y}$$M_{y}$ $O_4$/Li cell at the 1st cycle and at the 40th cycle were about 120~124 and 108~112mAh/g except LiM $n_{1.9}$Z $n_{0.1}$ $O_4$/Li cell, respectively. This cell capacity is retained by 93% after 40th cycle. AC impedance of $LiMn_{2-y}$$M_{y}$ $O_4$/Li cells revealed the similar resistance of about 65~110$\Omega$ before cycling. before cycling.g.g.

  • PDF

The Electrochemical Characterization of $LiMn_{2-y}M_{y}O_4$ Cathode Material - I. Crystal Structure and AC Impedance Properties of $LiMn_{2-y}Mg_{y}O_4$ ($LiMn_{2-y}M_{y}O_4$ 정극 활물질의 전기화학적 특성 - I. $LiMn_{2-y}Mg_{y}O_4$의 결정 구조 및 AC Impedance 특성)

  • 정인성;김종욱;구할본;김형곤;손명모
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.309-315
    • /
    • 2001
  • Crystallized $LiMn_{2-y}Mg_{y}O_4$ powder was prepared by calcing the mixture of LiOH.$H_2O$, $MnO_2$ and MgO at $800^{\circ}C$ for 36h in an air atmosphere. The structure of $LiMn_{2-y}Mg_{y}O_4$ crystallites was analyzed from powder X-ray diffraction data as a cubic spinel, space group Fd3m. Though all cathode material showed spinel phase based on cubic phase in X-ray diffraction, other peaks gradually exhibited and became intense with increasing y value in $LiMn_{2-y}Mg_{y}O_4$. However, ununiform which calculated by (111) face and (222) face was constant in spite of the increase of y value, except pure $LiMn_2O_4$. AC impedance of Li/$LiMn_{2-y}Mg_{y}O_4$ cells revealed the similar resistance of about $70\Omega$ before cycling. In addition, The impedance of Li/$LiMn_{1.9}Mg_{0.1}O_4$ cell changed during charge and discharge or after cycling.

  • PDF

ZnO Nanostructure Characteristics by VLS Synthesis (VLS 합성법을 이용한 ZnO 나노구조의 특성)

  • Choi, Yuri;Jung, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.617-621
    • /
    • 2009
  • Zinc oxide (ZnO) nanorods were grown on the pre-oxidized silicon substrate with the assistance of Au and the fluorine-doped tin oxide (FTO) based on the catalysts by vapor-liquid-solid (VLS) synthesis. Two types of ZnO powder particle size, 20nm, $20{\mu}m$, were used as a source material, respectively The properties of the nanorods such as morphological characteristics, chemical composition and crystalline properties were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscope (FE-SEM). The particle size of ZnO source strongly affected the growth of ZnO nanostructures as well as the crystallographic structure. All the ZnO nanostructures are hexagonal and single crystal in nature. It is found that $1030^{\circ}C$ is a suitable optimum growth temperature and 20 nm is a optimum ZnO powder particle size. Nanorods were fabricated on the FTO deposition with large electronegativity and we found that the electric potential of nanorods rises as the ratio of current rises, there is direct relationship with the catalysts, Therefore, it was considered that Sn can be the alternative material of Au in the formation of ZnO nanostructures.