• Title/Summary/Keyword: powder X-ray diffraction

Search Result 1,001, Processing Time 0.032 seconds

Structural Analysis of Simulated Fission-Produced Noble Metal Alloys and Their Superconductivities

  • Park, Yong Jun;Lee, Gwang Yong;Lee, Jong Gyu;Heo, Yong Deuk;Kim, Won Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1187-1192
    • /
    • 2000
  • Ternary (Mo-Ru-Pd) and binary (Mo-Ru, Mo-Pd) alloys have been prepared using an Ar arc melting furnace. Mo and the noble metals, Ru and Pd, are the constituents of metallic insoluble residues, which were found in the early days of post-irradiation studies on uranium oxide fuels. In the present study, the structure of the alloys was evaluated using a powder X-ray diffractometer. Unit cell parameters were determined by least squares refinements of powder X-ray diffraction data. Scanning electron microscopic analyses of the surface of the alloys indicated that surface morphology was dependent on the crystallographic structure as well as its composition. Measurements of the magnetic susceptibility of the alloys showed evidence of superconducting transition from 3 to 9.2 K. Among the ternary and binary alloys, the ${\sigma}-phase$ showed the highest superconducting transition temperature,~9.2 K.

Characteristics of (Sr1-xBax)NdFe3+1-τFe4+τO4-y System Heat-treated in Air

  • Lee, Eun-Seok;Hag, Jang-Chun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.39-42
    • /
    • 2012
  • To study the physical and chemical properties, solid solutions of $(Sr_{1-x}Ba_x)NdFe{^{3+}}_{1-\tau}Fe{^{4+}}_{\tau}O_{4-y}$ system with x=0.0(SBN-0), 0.1(SBN-1), 0.2(SBN-2) and 0.3(SBN-3) were synthesized in air at 1,473 K and annealed in air at 1,073 K for 24 h. X-ray powder diffraction assured that the four samples had tetragonal symmetries (I4/mmm). Their lattice volumes increased gradually with x values. Nonstoichiometric chemical formulas were formulated using the data such as $\tau$(amount of $Fe^{4+}$ ion) and y(oxygen deficiency) values using Mohr salt analysis. It was found out that all the four samples had excessive oxygen (4-y>4.0). All the samples started to lose some of their oxygen at around 613K(TG/DTA thermal analysis). They exhibited semiconductivities in the temperature range of around 283-1173K. All the four specimens had sufficient tensile strength to endure the force of 19.6 N (2 kg of weights) and the conductivity values of the ECIAs which were painted on pieces of glass with the area of $150mm^2$ ($10mm{\times}15mm$) and it was in the order of ECIA-0${\rightarrow}$ECIA-1${\rightarrow}$ECIA-2${\rightarrow}$ECIA-3 at a constant temperature.

Effects of Preparation conditions of sintered GdBa$_2$Cu$_3$Ox on the microstructures and electrical properties (소결체 GdBa$_2$Cu$_3$Ox의 제조 조건이 미세구조 및 전기적 특성에 미치는 영향)

  • 김시열;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.102-104
    • /
    • 1988
  • GdBa$_2$Cu$_3$Ox superconductors were prepared by ceramic powder compacting method. X-ray powder diffraction patterns and SEM microphotographs were taken to analyze phase and microstructure, and electrical properties were investigated by 4-point probe method. The results show that the $N_2$atmosphere enhances the formation of high Tc(critical temperature) phase, but the Tc is independent of sintering conditions.

  • PDF

Preparation of Submicron YBaCuO Powder by Sol-gel Method

  • Fan, Zhanguo;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.557-560
    • /
    • 2003
  • The submicron $YBa_2Cu_3O_x$ powder was prepared by the sol-gel method. The particle size is distributed from 0.2 to $1.0\;{\mu}m$, which benefits to eliminate the micro-cracks formed in the $YBa_2Cu_3O_x$ films deposited by electrophoresis. The powder was single phase of $YBa_2Cu_3O_x$ examined by X-ray diffraction. In the sol-gel process the citrate gel was formed from citric acid and nitrate solution of $Y_2O_3$, $Ba(NO_3)O_2$ and CuO. When pH values were adjusted to $6.4{\sim}6.7,\;Ba(NO_3)O_2$ could be dissolved in the citrate solution completely. Appropriate evaporative temperature of the sol-gel formation is discussed. After the heat treatment the transition temperature($T_c$) and critical current density($J_c$) of the $YBa_2Cu_3O_x$ samples made of the submicron powder were measured.

  • PDF

Physical and Chemical Properties of (Sr,Mg)FeO3-y System Heat-treated in N2 (N2 분위기에서 열처리한 (Sr,Mg)FeO3-y계의 물리 및 화학적 성질)

  • Lee, Eun-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.642-647
    • /
    • 2015
  • The perovskite solid solutions of the $Sr_{1-x}Mg_xFe{^{3+}}_{1-{\tau}}Fe{^{4+}}_{\tau}O_{3-y}$ system (x=0.0, 0.1, 0.2, and 0.3) were synthesized in $N_2$ at $1,150^{\circ}C$. X-ray powder diffraction study assured that all the four samples had cubic symmetries(SM-0: $3.865{\AA}$, SM-1: $3.849{\AA}$, SM-2: $3.833{\AA}$, and SM-3: $3.820{\AA}$) and that the lattice volumes decreased steadily from $57.7{\AA}^3$ to $55.7{\AA}^3$ with x values. The nonstoichiometric chemical formulas were determined by Mohr salt analysis and with the increase of x values the amounts of $Fe^{4+}$ ion and oxygen were decreased simultaneously. Thermal analysis showed that SM-0 started to lose its oxygen at $450^{\circ}C$ and SM-1, Sm-2, and SM-3 began to lose their oxygen at around $350{\sim}400^{\circ}C$. SM-0 showed almost reversible weight change in the cooling process. All the samples exhibited semiconducting behaviors in the temperature range of $10{\sim}400^{\circ}C$. Conductivities of the 4 samples were decreased in the order of SM-0, SM-1, SM-2, and SM-3 at constant temperature. The activation energies of the conductions were in the range of 0.176 eV~0.244 eV.

A Study on the Manufacture of Composite W Powder for Low Sintering Temperature by Liquid Reduction Precipitation Method (액상환원침전법에 의한 저온활성화소결용 복합W분말의 제조방법 및 소결특성에 관한 연구)

  • 김창욱;이철;정인;윤성렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.207-218
    • /
    • 1995
  • Tungsten(W) metal has excellent properties in heat-resistance, corrison-resistance and impact-resistance but W-Metal is hard to sinter because higher than $2,000^{\circ}C$ is required to sinter W-powder. Con-sequently, a deposit technique of Nikel Phosphorus(NiP) on W-powber by the liquid reduction precipitation method was performed. Sintering temperature of the resulting W-NiP composite was lowered around to $1,000^{\circ}C$, and the mechanical properties of the sintered body was studied. The most suitable conditions for NiP thin film deposit on W-Powder by the liquid reduction precipitation method, which are composition, concentration, pH and temperature of the liquid reduction solution, were considered. The activated sintering was carried out in a reducing condition furnace. Components and properties of the sintered body were investigated by the density and the hardness measurements, X- ray diffraction analysis, and microscopic photographs of the surface. Quantity of NiP thin film on W-powder could be varied by the change of the liquid reduction solution composition. The sintering temperature of W-NiP composite powder is lowered to $950^{\circ}C$ from $2,000^{\circ}C$ and the hardness is increased (ca. 720 Hv). Large shrinkage could be observed since density was increased from 5.5 to 11.0 g/$cm^2$ which 86.2% of theoretical density. W metal and $Ni_3P$ crystal were detected through X-ray diffraction on the sintered body. Perfectly activated sintering was observed by microscopic photographs.

  • PDF

A study on the Particulate Properties of Ti-Ni alloy Nanopowders Prepared by Levitational Gas Condensation Method (부양가스증발응축법으로 제조된 Ti-Ni 합금 나노분말의 특성 연구)

  • Han, B.S.;Uhm, Y.R.;Lee, M.K.;Kim, G.M.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.396-400
    • /
    • 2006
  • The Ti-Ni alloy nanopowders were synthesized by a levitational gas condensation (LGC) by using a micron powder feeding system and their particulate properties were investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) method. The starting Ti and Ni micron powders $150{\mu}m$ were incorporated into the micron powder feeding system. An ingot type of the Ti-Ni ahoy was used as a seed material for the levitation and evaporation reactions. The collected powders were finally passivated by oxidation. The x-ray diffraction experiments have shown that the synthesized powders were completely alloyed with Ti and Ni and comprised of two different cubic and monoclinic crystalline phases. The TEM results showed that the produced powders were very fine and uniform with a spherical particle size of 18 to 32nm. The typical thickness of a passivated oxide layer on the particle surface was about 2 to 3 nm. The specific surface area of the Ti-Ni alloy nanopowders was $60m^2/g$ based on BET method.

New Data on the Synthetic $Pt_{34}Sb_7$ and $Pt_3Sb$ Phases (합성화합물 $Pt_{34}Sb_7$$Pt_3Sb$에 대한 새로운 자료)

  • 김원사
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 1988
  • In the process of re-checking the phase relations of the Pt-Sb system the previously reported Pt4+Sb phase did not occur. Instead, Pt34Sb7 phase with an average chemical composition (wt%) Pt 89.3, Sb 11.4, total 100.7, has been newly found to exist, and the formula Pt34Sb7 has been tentatively assigned to it, It is pale brownish grey to yellowish grey under refloecting microscope and non-bireflectant, VHN100=225 (206-243). X-ray powder patterns are (d(I/Io)): 2.318(100), 2.293(100), 2.110(30), 1.440(50), 1.390(15), 1.283(5), 1.203(70) and 1.192(40)$\AA$. They are indexable on the basis of tertragonal cell with $\alpha$=3.948(3), c=16.85(1)$\AA$. A question whether the tetragonal Pt34Sb7 is the new phase or a polymorph of the cubic Pt4+Sb phase remains unclear and awaits better X-ray diffraction, electron microprobe analysis and DTA for the Pt4+Sb phase. The Pt3Sb phase reported to be of tetragonal symmetry has been confirmed to exist. It is greyish yellow in air and in oil, very weakly bireflectant, and weakly anisotropic. VHN25=216 (183-240). Its X-ray powder data have been successively indexed on a tetragonal cell with $\alpha$=3.9455(7), c=16.959(5)$\AA$.

  • PDF

Quantitative X-ray Diffraction Analysis of Synthetic Mineral Mixtures Including Amorphous Silica using the PONKCS Method (PONKCS 방법을 이용한 비정질 실리카 함유 인공광물혼합시료의 정량 X-선회절 분석)

  • Chon, Chul-Min;Lee, Sujeong;Lee, Sung Woo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • X-ray powder diffraction is one of the most powerful techniques for qualitative and quantitative analysis of crystalline compounds. Thus, there exist a number of different methods for quantifying mineral mixtures using X-ray diffraction pattern. We present here the use of Rietveld and PONKCS (partial or no known crystal structure) methods for quantification of amorphous and crystallized mineral phases in synthetic mixtures of standard minerals (amorphous silica, quartz, mullite and corundum). Pawley phase model of amorphous silica was successfully built from the pattern of 100 wt% amorphous silica and internal standard-spiked samples by PONKCS approach. The average of absolute bias for quantities of amorphous silica was 1.85 wt%. The larger bias observed for lower quantities of amorphous silica is probably explained by low intensities of diffraction pattern. Averages of absolute bias for minerals were 0.53 wt% for quartz, 0.87 wt% for mullite and 0.57 wt% for corundum, respectively. The PONKCS approach achieved improved quantitative results compared with classical Rietveld method by using an internal standard.