• Title/Summary/Keyword: potential state

Search Result 2,507, Processing Time 0.033 seconds

Fe-doped beta-tricalcium phosphate; crystal structure and biodegradable behavior with various heating temperature (Fe 이온 치환 beta-tricalcium phosphate의 하소 온도에 따른 미세구조 및 분해 특성)

  • Yoo, Kyung-Hyeon;Kim, Hyeonjin;Sun, Woo Gyeong;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.244-250
    • /
    • 2020
  • β-Tricalcium phosphate (β-TCP, Ca3(PO4)2) is a kind of biodegradable calcium phosphate ceramics with chemical and mineral compositions similar to those of bone. It is a potential candidate for bone repair surgery. To improve the bioactivity and osteoinductivity of β-TCP, various ions doped calcium phosphate have been studied. Among them, Iron is a trace element and its deficiency in the human body causes various problems. In this study, we investigated the effect of Fe ions on the structural variation, degradation behavior of β-TCP. Fe-doped β-TCP powders were synthesized by the coprecipitation method, and the heat treatment temperature was set at 925 and 1100℃. The structural analysis was carried out by Rietveld refinement using the X-ray diffraction results. Fe ions existed in a different state (Fe2+ or Fe3+) with different heat treatment temperatures, and the substitution sites (Ca-(4) and Ca-(5)) also changed with temperature. The degradation rate was fastest at Fe-doped β-TCP with heated at 1100℃. The cell viability behavior was also enhanced with the substitution of Fe ions. Therefore, the substitution of Fe ion has accelerated the degradation of β-TCP and improved the biocompatibility. It could be more utilized in biomedical devices.

Laser methane detector-based quantification of methane emissions from indoor-fed Fogera dairy cows

  • Kobayashi, Nobuyuki;Hou, Fujiang;Tsunekawa, Atsushi;Yan, Tianhai;Tegegne, Firew;Tassew, Asaminew;Mekuriaw, Yeshambel;Mekuriaw, Shigdaf;Hunegnaw, Beyadglign;Mekonnen, Wondimeneh;Ichinohe, Toshiyoshi
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1415-1424
    • /
    • 2021
  • Objective: Portable laser methane detectors (LMDs) may be an economical means of estimating CH4 emissions from ruminants. We validated an LMD-based approach and then used that approach to evaluate CH4 emissions from indigenous dairy cows in a dryland area of Ethiopia. Methods: First, we validated our LMD-based approach in Simmental crossbred beef cattle (n = 2) housed in respiration chambers and fed either a high- or low-concentrate diet. From the results of the validation, we constructed an estimation equation to determine CH4 emissions from LMD CH4 concentrations. Next, we used our validated LMD approach to examine CH4 emissions in Fogera dairy cows grazed for 8 h/d (GG, n = 4), fed indoors on natural-grassland hay (CG1, n = 4), or fed indoors on Napier-grass (Pennisetum purpureum) hay (CG2, n = 4). All the cows were supplemented with concentrate feed. Results: The exhaled CH4 concentrations measured by LMD were linearly correlated with the CH4 emissions determined by infrared-absorption-based gas analyzer (r2 = 0.55). The estimation equation used to determine CH4 emissions (y, mg/min) from LMD CH4 concentrations (x, ppm m) was y = 0.4259x+38.61. Daily CH4 emissions of Fogera cows estimated by using the equation did not differ among the three groups; however, a numerically greater milk yield was obtained from the CG2 cows than from the GG cows, suggesting that Napier-grass hay might be better than natural-grassland hay for indoor feeding. The CG1 cows had higher CH4 emissions per feed intake than the other groups, without significant increases in milk yield and body-weight gain, suggesting that natural-grassland hay cannot be recommended for indoor-fed cows. Conclusion: These findings demonstrate the potential of using LMDs to valuate feeding regimens rapidly and economically for dairy cows in areas under financial constraint, while taking CH4 emissions into consideration.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

Ferroelectric to Relaxor Transition Behavior in Lead-Free Ternary (Bi0.5Na0.5)TiO3-BiFeO3-SrTiO3 Piezoceramics (Bi0.5Na0.5TiO3-BiFeO3-SrTiO3 삼성분계 무연 압전 세라믹스의 강유전체-완화형 강유전체 상전이 거동)

  • Lee, Sang Sub;Lee, Chang-Heon;Duong, Trang An;Nguyen, Hoang Thien Khoi;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • This study investigated the structural, dielectric, ferroelectric, and strain properties of (0.98-x)Bi1/2Na1/2TiO3-0.02BiFeO3-xSrTiO3 (BNT-BF-100xST, x=0.20, 0.22, 0.24, 0.26, and 0.28). All samples were successfully synthesized using the conventional solid-state reaction method and sintered at 1,175℃ for 2 h. The average grain size of the BNT-BF-100x ceramics decreased with increasing ST content. Furthermore, we observed that the ferroelectric- relaxor transition temperature (TF-R) decreased with increasing ST content, which eventually vanished in the BNT-BF-24ST ceramics. The results indicated that a ferroelectric to relaxor phase transition could be induced by ST modification. Consequently, a large electromechanical strain of 633 pm/V at 4 kV/mm was observed for the BNT-BF-26ST ceramics. These results imply that our materials have the competitive advantage of larger strain under lower operating field conditions compared with other BNT-based lead-free piezoelectric ceramics. We expect that BNT-BF-ST lead-free piezoelectric ceramics are promising candidates as a novel ternary BNT-based system and can find potential applications in actuators.

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Eco-Friendly Interlocking Stabilized Soil Blocks for Urban Housing-Vulnerable Communities : A Community-Participatory Approach in Indonesia (도시 주거 취약층을 위한 친환경 조립형 흙블록 건축재 개발 - 인도네시아 주민 공동체의 참여적 접근 사례 -)

  • Park, Jaehyeon;Mulia, Jasri;Setiawan, Fajar
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • Housing issues such as mushrooming slums remain as chronic in most developing countries. Due to the state's restrained capacity, the housing-vulnerable's self-help approaches have been increasingly inevitable and vital for addressing the housing issues. However, there are still two challenges: securing good quality with economic efficiency, and climate change mitigation and adaptation. This study aims at doing an architectural experiment by developing and educating the production of eco-friendly interlocking stabilized soil bricks (ISSB) by employing vernacular materials and technologies for housing-vulnerable communities in Indonesia. In collaboration with a local architectural NGO, the study features a co-creation workshop in which 40 evicted households participate in the whole process. Soil analysis, mixed design, compression tests, and economic analysis are carried out. This paper illustrates that ISSB also has a high potential as an alternative to a burned brick or a cement block. The application of ISSB to self-help housing is expected to have socioeconomic and environmental effects, thereby facilitating the housing-vulnerable's self-help approaches and contributing to addressing the housing challenges in Indonesia.

Model Inversion Attack: Analysis under Gray-box Scenario on Deep Learning based Face Recognition System

  • Khosravy, Mahdi;Nakamura, Kazuaki;Hirose, Yuki;Nitta, Naoko;Babaguchi, Noboru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1100-1118
    • /
    • 2021
  • In a wide range of ML applications, the training data contains privacy-sensitive information that should be kept secure. Training the ML systems by privacy-sensitive data makes the ML model inherent to the data. As the structure of the model has been fine-tuned by training data, the model can be abused for accessing the data by the estimation in a reverse process called model inversion attack (MIA). Although, MIA has been applied to shallow neural network models of recognizers in literature and its threat in privacy violation has been approved, in the case of a deep learning (DL) model, its efficiency was under question. It was due to the complexity of a DL model structure, big number of DL model parameters, the huge size of training data, big number of registered users to a DL model and thereof big number of class labels. This research work first analyses the possibility of MIA on a deep learning model of a recognition system, namely a face recognizer. Second, despite the conventional MIA under the white box scenario of having partial access to the users' non-sensitive information in addition to the model structure, the MIA is implemented on a deep face recognition system by just having the model structure and parameters but not any user information. In this aspect, it is under a semi-white box scenario or in other words a gray-box scenario. The experimental results in targeting five registered users of a CNN-based face recognition system approve the possibility of regeneration of users' face images even for a deep model by MIA under a gray box scenario. Although, for some images the evaluation recognition score is low and the generated images are not easily recognizable, but for some other images the score is high and facial features of the targeted identities are observable. The objective and subjective evaluations demonstrate that privacy cyber-attack by MIA on a deep recognition system not only is feasible but also is a serious threat with increasing alert state in the future as there is considerable potential for integration more advanced ML techniques to MIA.

Pedagogical Conditions for Formation of Design Competence of Qualified Workers with the Use of Information Technologies

  • Slipchyshyn, Lidiia;Honcharuk, Oksana;Anikina, Inessa;Yakymenko, Polina;Breslavska, Hanna;Yakymenko, Svitlana;Opria, Ihor
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.79-88
    • /
    • 2022
  • Modern production requires production staff who have design competence, experience and skills to work in various types of work integrated into professional activities. Possession of digital design methods significantly expands the opportunities for professional activities of qualified workers. The purpose of our study was to study the impact of pedagogical conditions on the formation of design competence of future qualified workers in a group work. We have identified a set of pedagogical conditions that promote the development of professionally oriented artistic and technical creativity of workers in the conditions of curricular and extracurricular activities, which include motivational-target, procedural-semantic, organizational-technological, and subject-oriented. It is shown that the formation of design competence is determined by motivational, informational-active and reflection criteria, which are aimed at motivational-value, cognitive, operational-active, creative, social and emotional components of this competence. The methodology of the research is highlighted, which includes the use of the following methods: determination of the personality's motivational sphere in order to identify strong and weak motives of students activity; multiple intelligence to identify students talents in the direction of practical intelligence, which is important for design competence; determining the level of creative activity to identify manifestations of students creative abilities; identifying the type of students innovative thinking in order to develop motivation for success; factor-criterion model, developed on the basis of a qualimetric approach, which is used to identify the level of design competence formation in accordance with its components. The results of the study showed that the creation of separate pedagogical conditions in the institution of vocational education and training (VET) had a positive impact on the development of design competence, which shows the potential of artistic and technical design in the development of professional creativity of future qualified workers taking into account the environmental approach.

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System (프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구)

  • Lee, Ji-woong;Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1082-1087
    • /
    • 2021
  • The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.

A Study on the Physical Characteristics of Grout Material for Backfilling Ground Heat Exchanger (지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Choi, Hyo-Pum;Woo, Sang-Baik
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • A geothermal heat pump system is a preferable alternative energy system in Korea because it uses the heat energy of the earth, which is environmentally friendly and inexhaustible. In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts, one marine clay from Boryung, and cement grouts adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The marine clay turns out to be unsuitable for backfilling the ground heat exchanger due to its insufficient swelling potential. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than that in the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.