• 제목/요약/키워드: potential pathogen

검색결과 381건 처리시간 0.028초

Mycoherbicidal Potential of Phaeoacremonium italicum, A New Pathogen of Eichhornia crassipes Infesting Harike Wetland, India

  • Singh, Birinderjit;Saxena, Sanjai;Meshram, Vineet;Kumar, Maneek
    • Mycobiology
    • /
    • 제44권2호
    • /
    • pp.85-92
    • /
    • 2016
  • Mycoherbicides are exclusive biotechnology products which offer a non-chemical solution to control noxious weeds on the land as well as aquatic in systems, viz a viz saving environment from hazardous impact of synthetic chemicals. The present paper highlights the mycobiota associated with Eichhornia crassipes infesting Harike wetland area of Punjab and evaluation of their pathogenic potential for futuristic application as a mycoherbicide. Of the 20 isolates tested by leaf detached assay and whole plant bioassays, only one isolate (#8 BJSSL) caused 100% damage to E. crassipes. Further, the culture filtrate of this isolate also exhibited a similar damage to the leaves in an in vitro detached leaf assay. The potential isolate was identified as Phaeoacremonium italicum using classical and modern molecular methods. This is the first report of P. italicum as a pathogen of E. crassipes and of its potential use as a biological control agent for the management of water hyacinth.

Computational Identification of Essential Enzymes as Potential Drug Targets in Shigella flexneri Pathogenesis Using Metabolic Pathway Analysis and Epitope Mapping

  • Narad, Priyanka;Himanshu, Himanshu;Bansal, Hina
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.621-629
    • /
    • 2021
  • Shigella flexneri is a facultative intracellular pathogen that causes bacillary dysentery in humans. Infection with S. flexneri can result in more than a million deaths yearly and most of the victims are children in developing countries. Therefore, identifying novel and unique drug targets against this pathogen is instrumental to overcome the problem of drug resistance to the antibiotics given to patients as the current therapy. In this study, a comparative analysis of the metabolic pathways of the host and pathogen was performed to identify this pathogen's essential enzymes for the survival and propose potential drug targets. First, we extracted the metabolic pathways of the host, Homo sapiens, and pathogen, S. flexneri, from the KEGG database. Next, we manually compared the pathways to categorize those that were exclusive to the pathogen. Further, all enzymes for the 26 unique pathways were extracted and submitted to the Geptop tool to identify essential enzymes for further screening in determining the feasibility of the therapeutic targets that were predicted and analyzed using PPI network analysis, subcellular localization, druggability testing, gene ontology and epitope mapping. Using these various criteria, we narrowed it down to prioritize 5 novel drug targets against S. flexneri and one vaccine drug targets against all strains of Shigella. Hence, we suggest the identified enzymes as the best putative drug targets for the effective treatment of S. flexneri.

Future Perspectives on New Approaches in Pathogen Detection

  • Li, Peng;Ho, Bow;Ding, Jeak Ling
    • 대한의생명과학회지
    • /
    • 제21권4호
    • /
    • pp.165-171
    • /
    • 2015
  • Microbial pathogens are responsible for most of the rapidly-spreading deadly infectious diseases against humans. Thus, there is an urgent need for efficient and rapid detection methods for infectious microorganisms. The detection methods should not only be targeted and specific, but they have to be encompassing of potential changes of the pathogen as it evolves and mutates quickly during an epidemic or pandemic. The existing diagnostics such as the antibody-based ELISA immunoassay and PCR methods are too selective and narrowly focused; they are insufficient to capture newly evolved mutant strains of the pathogen. Here, we introduce a fresh perspective on some new technologies, including aptamers and next generation sequencing for pathogen detection. These technologies are not in their infancy; they are reasonably mature and ready, and they hold great promise for unparalleled applications in pathogen detection.

Bacteriophages: A New Weapon for the Control of Bacterial Blight Disease in Rice Caused by Xanthomonas oryzae

  • Ranjani, Pandurangan;Gowthami, Yaram;Gnanamanickam, Samuel S;Palani, Perumal
    • 한국미생물·생명공학회지
    • /
    • 제46권4호
    • /
    • pp.346-359
    • /
    • 2018
  • Xanthomonas oryzae, a bacterial pathogen causing leaf blight disease (BLB) in rice, can cause widespread disease and has caused epidemics globally, resulting in severe crop losses of 50% in Asia. The pathogen is seed-borne and is transmitted through seeds. Thus, control of BLB requires the elimination of the pathogen from seeds. Concern about environment-friendly organic production has spurred improvements in a variety of biological disease control methods, including the use of bacteriophages, against bacterial plant pathogens. The present study explored the potential of bacteriophages isolated from diseased plant leaves and soil samples in killing the bacterial pathogen in rice seeds. Eight different phages were isolated and evaluated for their bacteriolytic activity against different pathogenic X. oryzae strains. Of these, a phage designated ${\varphi}XOF4$ killed all the pathogenic X. oryzae strains and showed the broadest host range. Transmission electron microscopy of ${\varphi}XOF4$ revealed it to be a tailed phage with an icosahedral head. The virus was assigned to the family Siphoviridae, order Caudovirales. Seedlings raised from the seeds treated with $1{\times}10^8pfu/ml$ of ${\varphi}XOF4$ phage displayed reduced incidence of BLB disease and complete bacterial growth inhibition. The findings indicate the potential of the ${\varphi}XOF4$ phage as a potential biological control agent against BLB disease in rice.

INDUCTION OF SYSTEMIC RESISTANCE IN CUCUMBER AGAINST ANTHRACNOSE BY PLANT GROWTH PROMOTING FUNGI

  • Hyakumachi, Mitsuro
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1997년도 Proceedings of special lectures on Recent Research Trend of Plant Pathology
    • /
    • pp.47-55
    • /
    • 1997
  • Plant growth promoting fungi(PGPF) obtained from zoysiagrass rhizosphere offer dual advantages - induse systemic disease resistance response in cucumber to C. orbiculare infection and cause enhancement of plant growth and increase yield. PGPF protected plants either by colonizing roots or by their metabolites. PGPF offer an advantage by protecting plants for more than 9 weeks and 6 week in the greenhouse and field. PGPF-induced plants limited pathogen spore germination and decreased the number of infection hyphae on the leaf, and increased lignification at places of attempted pathogen infection, thus reducing the pathogen spread. PGPF elicited increased activities of chitinascs, glucanases, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase to C. orbiculare infection in cucumber plants. The role of PGPF in elevating cucumber defense response to pathogen infection suggests potential application of PGPF as biological control agents.

  • PDF

Microbiological Evaluation of Antibiotic Resistance and Pathgoenicity in Autothermal Thermophilic Aerobic Digestion Treated Swine Manure

  • 한일;;기동원;박준홍
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.119-122
    • /
    • 2006
  • In both untreated and conventionally stabilized swine manures antibiotic resistant (AR) microorganisms, Staphylococcus-like and Salmonella-like microorganisms were detected. Also pathogens with MAR phynotype were detected. Presence of such microorganisms suggest high level of pathogen-related health risk to farmers who may be in direct contact with the manure and its conventionally stabilized product In contrast the autothermal thermophilic aerobic digestion (ATAD) treatment have efficiently reduced AR and pathogenicity from the swine manure. When soil was fertilized using swine manure and its stabilized products, despite no detection of MAR-exhibiting pathogen-like microorganisms in fertilized soil, potential pathogen-related health risk could not be ruled out from the fertilized soil since the organic fertilization led to increase in AR and pathogenicity in the soil microbial communities. As conclusion, this microbiological study demonstrated that an ATAD process is applicable in control of pathogen-related health risk in livestock manure.

  • PDF

In vitro Biofumigation of Brassica Tissues Against Potato Stem Rot Caused by Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza;Jiang, Heng;Xie, Guan-Lin;Cui, Zhou-Qi;Zhang, Jingze;Li, Bin
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.185-190
    • /
    • 2012
  • Sclerotinia sclerotiorum is a serious pathogen which causes yield loss in many dicotyledonous crops including potato. The objective of this study was to assess the potential of biofumigation using three Brassica crops including Brassica napus, B. juncea and B. campestris against potato stem rot caused by S. sclerotiorum by in vitro tests. Both macerated and irradiated dried tissues were able to reduce radial growth and sclerotia formation of five pathogen isolates on PDA, but macerated live tissues were more effective. Compared with other tested crops, B. juncea showed more inhibitory effect against the pathogen. The volatile compounds produced from macerated tissues were identified using a gas chromatograph-mass spectrometer. The main identified compounds were methyl, allyl and butyl isothiocyanates. Different concentrations of these compounds inhibited mycelial growth of the pathogen in vitro when applied as the vapor of pure chemicals. A negative relationship was observed between chemicals concentrations and growth inhibition percentage. In this study, it became clear that the tissues of local Brassica crops release glucosinolates and have a good potential to be used against the pathogen in field examinations.

Proteomic Analysis of Shigella Virulence Effectors Secreted under Different Conditions

  • Liu, Xingming;Lu, Lilan;Liu, Xinrui;Liu, Xiankai;Pan, Chao;Feng, Erling;Wang, Dongshu;Niu, Chang;Zhu, Li;Wang, Hengliang
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.171-178
    • /
    • 2017
  • A series of novel effector molecules secreted by the type three secretion system (T3SS) of Shigella spp. have been reported in recent years. In this study, a proteomic approach was applied to study T3SS effectors systematically. First, proteins secreted by the S. flexneri wild-type strain after Congo Red induction were separated and identified using two-dimensional electrophoresis to display the relative abundance of all kinds of early effectors for the first time. Then, a gene deletion mutant of known virulence repressor (OspD1) and a gene overexpressed mutant of two known virulence activators (MxiE and IpgC) were constructed and analyzed to discover potential late effectors. Furthermore, the supernatant proteins of gene deletion mutants of two known translocators (IpaB and IpaD), which would constantly secrete effectors, were also analyzed. Among all of the secreted proteins identified in our study, IpaH1.4, IpaH_5, and IpaH_7 have not been reported before. These proteomics data of the secreted effectors will be valuable to understand the pathogenesis of S. flexneri.

Cloning and Biochemical Characterization of a Hyaluronate Lyase from Bacillus sp. CQMU-D

  • Lu Wang;Qianqian Liu;Xue Gong;Wenwen Jian;Yihong Cui;Qianying Jia;Jibei Zhang;Yi Zhang;Yanan Guo;He Lu;Zeng Tu
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.235-241
    • /
    • 2023
  • Hyaluronidase (HAase) can enhance drug diffusion and dissipate edema by degrading hyaluronic acid (HA) in the extracellular matrix into unsaturated HA oligosaccharides in mammalian tissues. Microorganisms are recognized as valuable sources of HAase. In this study, a new hyaluronate lyase (HAaseD) from Bacillus sp. CQMU-D was expressed in Escherichia coli BL21, purified, and characterized. The results showed that HAaseD belonged to the polysaccharide lyase (PL) 8 family and had a molecular weight of 123 kDa. HAaseD could degrade chondroitin sulfate (CS) -A, CS-B, CS-C, and HA, with the highest activity toward HA. The optimum temperature and pH value of HAaseD were 40℃ and 7.0, respectively. In addition, HAaseD retained stability in an alkaline environment and displayed higher activity with appropriate concentrations of metal ions. Moreover, HAaseD was an endolytic hyaluronate lyase that could degrade HA to produce unsaturated HA oligosaccharides. Together, our findings indicate that HAaseD from Bacillus sp. CQMU-D is a new hyaluronate lyase and with excellent potential for application in industrial production.

Message in a Bottle: Chemical Biology of Induced Disease Resistance in Plants

  • Schreiber, Karl;Desveaux, Darrell
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.245-268
    • /
    • 2008
  • The outcome of plant-pathogen interactions is influenced significantly by endogenous small molecules that coordinate plant defence responses. There is currently tremendous scientific and commercial interest in identifying chemicals whose exogenous application activates plant defences and affords protection from pathogen infection. In this review, we provide a survey of compounds known to induce disease resistance in plants, with particular emphasis on how each compound was originally identified, its putative or demonstrated mechanism of defence induction, and the known biological target(s) of each chemical. Larger polymeric structures and peptides/proteins are also discussed in this context. The quest for novel defence-inducing molecules would be aided by the capability for high-throughput analysis of candidate compounds, and we describe some issues associated with the development of these types of screens. Subsequent characterization of hits can be a formidable challenge, especially in terms of identifying chemical targets in plant cells. A variety of powerful molecular tools are available for this characterization, not only to provide insight into methods of plant defence activation, but also to probe fundamental biological processes. Furthermore, these investigations can reveal molecules with significant commercial potential as crop protectants, although a number of factors must be considered for this potential to be realized. By highlighting recent progress in the application of chemical biology techniques for the modulation of plant-pathogen interactions, we provide some perspective on the exciting opportunities for future progress in this field of research.