DOI QR코드

DOI QR Code

Future Perspectives on New Approaches in Pathogen Detection

  • Li, Peng (Centre for Biomedical and Life Sciences, Singapore Polytechnic) ;
  • Ho, Bow (Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore) ;
  • Ding, Jeak Ling (Department of Biological Sciences, National University of Singapore)
  • Received : 2015.12.03
  • Accepted : 2015.12.20
  • Published : 2015.12.31

Abstract

Microbial pathogens are responsible for most of the rapidly-spreading deadly infectious diseases against humans. Thus, there is an urgent need for efficient and rapid detection methods for infectious microorganisms. The detection methods should not only be targeted and specific, but they have to be encompassing of potential changes of the pathogen as it evolves and mutates quickly during an epidemic or pandemic. The existing diagnostics such as the antibody-based ELISA immunoassay and PCR methods are too selective and narrowly focused; they are insufficient to capture newly evolved mutant strains of the pathogen. Here, we introduce a fresh perspective on some new technologies, including aptamers and next generation sequencing for pathogen detection. These technologies are not in their infancy; they are reasonably mature and ready, and they hold great promise for unparalleled applications in pathogen detection.

Keywords

References

  1. Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens Bioelectron. 2015. 68: 149-155. https://doi.org/10.1016/j.bios.2014.12.040
  2. Acquah C, Danquah MK, Yon JL, Sidhu A, Ongkudon CM. A review on immobilised aptamers for high throughput biomolecular detection and screening. Anal Chim Acta. 2015. 888: 10-18. https://doi.org/10.1016/j.aca.2015.05.050
  3. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001. 2: 675-680. https://doi.org/10.1038/90609
  4. Bruno JG. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules. 2015. 20: 6866-6887. https://doi.org/10.3390/molecules20046866
  5. Cho S, Kim JE, Lee BR, Kim JH, Kim BG. Bis-aptazyme sensors for hepatitis C virus replicase and helicase without blank signal. Nucleic Acids Res. 2005. 33: e177. https://doi.org/10.1093/nar/gni174
  6. de La Vega MA, Stein D, Kobinger GP. Ebolavirus evolution: past and present. PLoS Pathog. 2015. 11: e1005221. https://doi.org/10.1371/journal.ppat.1005221
  7. Ding JL, Gan ST, Ho B. Single-stranded DNA oligoaptamers: molecular recognition and LPS antagonism are length- and secondary structure-dependent. J Innate Immun. 2009. 1: 46-58. https://doi.org/10.1159/000145542
  8. Fischer C, Hunniger T, Jarck JH, Frohnmeyer E, Kallinich C, Haase I, Hahn U, Fischer M. Food sensing: aptamer-based trapping of Bacillus cereus spores with specific detection via real time PCR in milk. J Agric Food Chem. 2015. 63: 8050-8057. https://doi.org/10.1021/acs.jafc.5b03738
  9. Fu P, Sun Z, Yu Z, Zhang Y, Shen J, Zhang H, Xu W, Jiang F, Chen H, Wu W. Enzyme linked aptamer assay: based on a competition format for sensitive detection of antibodies to Mycoplasma bovis in serum. Anal Chem. 2014. 86: 1701-1709. https://doi.org/10.1021/ac4042203
  10. Hutchison CA, 3rd. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 2007. 35: 6227-6237. https://doi.org/10.1093/nar/gkm688
  11. Jiang N, Tan NS, Ho B, Ding JL. Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat Immunol. 2007. 8: 1114-1122. https://doi.org/10.1038/ni1501
  12. Kim H, Jebrail MJ, Sinha A, Bent ZW, Solberg OD, Williams KP, Langevin SA, Renzi RF, Van De Vreugde JL, Meagher RJ, Schoeniger JS, Lane TW, Branda SS, Bartsch MS, Patel KD. A microfluidic DNA library preparation platform for next-generation sequencing. PLoS One. 2013. 8: e68988. https://doi.org/10.1371/journal.pone.0068988
  13. Kotula JW, Sun J, Li M, Pratico ED, Fereshteh MP, Ahrens DP, Sullenger BA, Kovacs JJ. Targeted disruption of beta-arrestin 2-mediated signaling pathways by aptamer chimeras leads to inhibition of leukemic cell growth. PLoS One. 2014. 9: e93441. https://doi.org/10.1371/journal.pone.0093441
  14. Lai HC, Wang CH, Liou TM, Lee GB. Influenza A virus-specific aptamers screened by using an integrated microfluidic system. Lab Chip. 2014. 14: 2002-2013. https://doi.org/10.1039/c4lc00187g
  15. Lee CH, Kim JH, Lee SW. Prospects for nucleic acid-based therapeutics against hepatitis C virus. World J Gastroenterol. 2013. 19: 8949-8962. https://doi.org/10.3748/wjg.v19.i47.8949
  16. Lee KA, Ahn JY, Lee SH, Singh Sekhon S, Kim DG, Min J, Kim YH. Aptamer-based sandwich assay and its clinical outlooks for detecting lipocalin-2 in hepatocellular carcinoma (HCC). Sci Rep. 2015. 5: 10897. https://doi.org/10.1038/srep10897
  17. Lee YJ, Han SR, Maeng JS, Cho YJ, Lee SW. In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem Biophys Res Commun. 2012. 417: 414-420. https://doi.org/10.1016/j.bbrc.2011.11.130
  18. Li P, Wohland T, Ho B, Ding JL. Perturbation of lipopoly-saccharide (LPS) micelles by Sushi 3 (S3) antimicrobial peptide. The importance of an intermolecular disulfide bond in S3 dimer for binding, disruption, and neutralization of LPS. J Biol Chem. 2004. 279: 50150-50156. https://doi.org/10.1074/jbc.M405606200
  19. Li P, Wong JJ, Sum C, Sin WX, Ng KQ, Koh MB, Chin KC. IRF8 and IRF3 cooperatively regulate rapid interferon-beta induction in human blood monocytes. Blood. 2011. 117: 2847-2854. https://doi.org/10.1182/blood-2010-07-294272
  20. Lin M, Li W, Wang Y, Yang X, Wang K, Wang Q, Wang P, Chang Y, Tan Y. Discrimination of hemoglobins with subtle differences using an aptamer based sensing array. Chem Commun (Camb). 2015. 51: 8304-8306. https://doi.org/10.1039/C5CC00929D
  21. Liu Q, Zhu Y, Yong WK, Sze NS, Tan NS, Ding JL. Synchronization of IRF1, JunB, and C/EBPbeta activities during TLR3-TLR7 cross-talk orchestrates timely cytokine synergy in the proinflammatory response. J Immunol. 2015. 195: 801-805. https://doi.org/10.4049/jimmunol.1402358
  22. Metzker ML. Emerging technologies in DNA sequencing. Genome Res. 2005. 15: 1767-1776. https://doi.org/10.1101/gr.3770505
  23. Mosing RK, Bowser MT. Microfluidic selection and applications of aptamers. J Sep Sci. 2007. 30: 1420-1426. https://doi.org/10.1002/jssc.200600483
  24. Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med. 2005. 56: 555-583. https://doi.org/10.1146/annurev.med.56.062904.144915
  25. Oxford JS, Bossuyt S, Lambkin R. A new infectious disease challenge: Urbani severe acute respiratory syndrome (SARS) associated coronavirus. Immunology. 2003. 109: 326-328. https://doi.org/10.1046/j.1365-2567.2003.01684.x
  26. Rutvisuttinunt W, Chinnawirotpisan P, Simasathien S, Shrestha SK, Yoon IK, Klungthong C, Fernandez S. Simultaneous and complete genome sequencing of influenza A and B with high coverage by Illumina MiSeq Platform. J Virol Methods. 2013. 193: 394-404. https://doi.org/10.1016/j.jviromet.2013.07.001
  27. Schloss JA. How to get genomes at one ten-thousandth the cost. Nat Biotechnol. 2008. 26: 1113-1115. https://doi.org/10.1038/nbt1008-1113
  28. Schutze T, Wilhelm B, Greiner N, Braun H, Peter F, Morl M, Erdmann VA, Lehrach H, Konthur Z, Menger M, Arndt PF, Glokler J. Probing the SELEX process with next-generation sequencing. PLoS One. 2011. 6: e29604. https://doi.org/10.1371/journal.pone.0029604
  29. Shangguan J, Li Y, He D, He X, Wang K, Zou Z, Shi H. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst. 2015. 140: 4489-4497. https://doi.org/10.1039/C5AN00535C
  30. Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors (Basel). 2012. 12: 612-631. https://doi.org/10.3390/s120100612
  31. Thaitrong N, Kim H, Renzi RF, Bartsch MS, Meagher RJ, Patel KD. Quality control of next-generation sequencing library through an integrative digital microfluidic platform. Electrophoresis. 2012. 33: 3506-3513. https://doi.org/10.1002/elps.201200441
  32. Toscano-Garibay JD, Benitez-Hess ML, Alvarez-Salas LM. Isolation and characterization of an RNA aptamer for the HPV-16 E7 oncoprotein. Arch Med Res. 2011. 42: 88-96. https://doi.org/10.1016/j.arcmed.2011.02.005
  33. Wortmann GW. Middle East respiratory syndrome: SARS redux? Cleve Clin J Med. 2015. 82: 584-588. https://doi.org/10.3949/ccjm.82a.15097
  34. Yoo SM, Kim DK, Lee SY. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta. 2015. 132: 112-117. https://doi.org/10.1016/j.talanta.2014.09.003
  35. Yuce M, Ullah N, Budak H. Trends in aptamer selection methods and applications. Analyst. 2015. 140: 5379-5399. https://doi.org/10.1039/C5AN00954E
  36. Zhou Q, Rahimian A, Son K, Shin DS, Patel T, Revzin A. Development of an aptasensor for electrochemical detection of exosomes. Methods. 2015.