• 제목/요약/키워드: potential learning

검색결과 1,083건 처리시간 0.029초

개방형 혁신과 조직학습 특성이 벤처기업의 기술경쟁우위에 미치는 영향 (The Effect of Open Innovation and Organizational Learning on Technological Competitive Advantage in Venture Business)

  • 서리빈;윤현덕
    • 지식경영연구
    • /
    • 제13권2호
    • /
    • pp.73-93
    • /
    • 2012
  • Although a wide range of theoretical researches have emphasized on the importance of knowledge management in cooperative R&D network, the empirical researches to synthetically examine the role of organizational learning and open innovation which influence on the performance of technological innovation are not enough to meet academic and practical demands. This study is to investigate the effect of open innovation and organizational learning in venture business on technological competitive advantage and establish the mediating role of organizational learning. For the purpose, the questionnaires, made based on the reviewing previous researches, were collected from 274 Korean venture businesses whose managerial focus is on developing technological innovation. As a result of analysis, the relational dimensions of open innovation - network, intensity and trust shared by a firm with external R&D partners - as well as the internal organizational learning system and competence have positive influence on building technological competitive advantage whose sub-variables are technological excellence, market growth potential and business feasibility. In addition, it is identified that organizational learning has the mediating and moderating effect in the relationship between open innovation and technological competitive advantage. These results imply that open innovation complements and expend the range of limited resources and the scope of innovation in technology-intensive small and medium-sized enterprises. Besides, organizational learning activity reinforces the use of knowledge and resources, obtained from external R&D partners. On the basis of these results, detailed issues and discussion were made in the conclusion.

  • PDF

머신러닝을 이용한 국내 수입 자동차 구매 해약 예측 모델 연구: H 수입차 딜러사 대상으로 (A Study on the Prediction Model for Imported Vehicle Purchase Cancellation Using Machine Learning: Case of H Imported Vehicle Dealers)

  • 정동균;이종화;이현규
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권2호
    • /
    • pp.105-126
    • /
    • 2021
  • Purpose The purpose of this study is to implement a optimal machine learning model about the cancellation prediction performance in car sales business. It is to apply the data set of accumulated contract, cancellation, and sales information in sales support system(SFA) which is commonly used for sales, customers and inventory management by imported car dealers, to several machine learning models and predict performance of cancellation. Design/methodology/approach This study extracts 29,073 contracts, cancellations, and sales data from 2015 to 2020 accumulated in the sales support system(SFA) for imported car dealers and uses the analysis program Python Jupiter notebook in order to perform data pre-processing, verification, and modeling that is applying and learning to Machine learning model after then the final result was predicted using new data. Findings This study confirmed that cancellation prediction is possible by applying car purchase contract information to machine learning models. It proved the possibility of developing and utilizing a generalized predictive model by using data of imported car sales system with machine learning technology. It can reduce and prevent the sales failure as caring the potential lost customer intensively and it lead to increase sales revenue by predicting the cancellation possibility of individual customers.

후두음성 질환에 대한 인공지능 연구 (Artificial Intelligence for Clinical Research in Voice Disease)

  • 석준걸;권택균
    • 대한후두음성언어의학회지
    • /
    • 제33권3호
    • /
    • pp.142-155
    • /
    • 2022
  • Diagnosis using voice is non-invasive and can be implemented through various voice recording devices; therefore, it can be used as a screening or diagnostic assistant tool for laryngeal voice disease to help clinicians. The development of artificial intelligence algorithms, such as machine learning, led by the latest deep learning technology, began with a binary classification that distinguishes normal and pathological voices; consequently, it has contributed in improving the accuracy of multi-classification to classify various types of pathological voices. However, no conclusions that can be applied in the clinical field have yet been achieved. Most studies on pathological speech classification using speech have used the continuous short vowel /ah/, which is relatively easier than using continuous or running speech. However, continuous speech has the potential to derive more accurate results as additional information can be obtained from the change in the voice signal over time. In this review, explanations of terms related to artificial intelligence research, and the latest trends in machine learning and deep learning algorithms are reviewed; furthermore, the latest research results and limitations are introduced to provide future directions for researchers.

Researching Science Learning Outside the Classroom

  • Dillon, Justin
    • 한국과학교육학회지
    • /
    • 제27권6호
    • /
    • pp.519-528
    • /
    • 2007
  • Although science continues to be a key subject in the education of the majority of young people throughout the world, it is becoming increasingly clear that school science is failing to win the hearts and minds of many of today's younger generation. Researchers have begun to look at ways in which the learning that takes place in museums, science centres and other informal settings can add value to science learning in schools. Four case studies are used to illustrate the potential afforded by informal contexts to research aspects of science learning. The case studies involve: the European Union PENCIL (Permanent European Resource Centre for Informal Learning) project (a network of 14 museums and science centres working with schools to enhance learning in maths and science); a large natural history museum in England; the Tate Modernart gallery in London, and the Outdoor Classroom Action Research Project which involved researchers working in school grounds, field centres and farms. The range of research questions that were asked are examined as are the methodological approaches taken and the methods used to collect and analyse data. Lessons learned from the studies about research in the informal contexts are discussed critically.

딥러닝 기반의 투명 렌즈 이상 탐지 알고리즘 성능 비교 및 적용 (Comparison and Application of Deep Learning-Based Anomaly Detection Algorithms for Transparent Lens Defects)

  • 김한비;서대호
    • 산업경영시스템학회지
    • /
    • 제47권1호
    • /
    • pp.9-19
    • /
    • 2024
  • Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.

퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구 (A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator)

  • 김동희;이수흠;신위재
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.79-85
    • /
    • 2001
  • 본 논문에서는 퍼지 보상기와 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 역 기구학 해를 구하는 방법을 제안한다. 가우시안 위치 함수를 활성화 함수로 사용하는 자기구성 신경회로망은 학습 시작시 1개의 은닉층 노드를 가지고 학습을 하면서 점차적으로 은닉층의 노드수를 증가시킴으로서 최적의 노드수를 얻을 수 있으며, 퍼지 보상기는 신경회로망의 양호한 학습비를 얻는다. 이와 같이 시스템을 구성하여 빠른 학습속도와 학습비의 개선 그리고 빠른 정상상태로의 수렴을 확인하였다.

  • PDF

Effects of Erythropoietin on Memory Deficits and Brain Oxidative Stress in the Mouse Models of Dementia

  • Kumar, Rohit;Jaggi, Amteshwar Singh;Singh, Nirmal
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.345-352
    • /
    • 2010
  • The present study was undertaken to explore the potential of erythropoietin in memory deficits of mice. Memory impairment was produced by scopolamine (0.5 mg/kg, $i.p.$) and intracerebroventricular streptozotocin (i.c.v STZ, 3 mg/kg, $10{\mu}l$, $1^{st}$ and $3^{rd}$ day) in separate groups of animals. Morris water-maze test was employed to assess learning and memory. The levels of brain thio-barbituric acid reactive species (TBARS) and reduced glutathione (GSH) were estimated to assess degree of oxidative stress. Brain acetylcholinesterase enzyme (AChE) activity was also measured. Scopolamine/streptozotocin administration induced significant impairment of learning and memory in mice as indicated by marked decrease in Morris water-maze performance. Scopolamine/streptozotocin administration also produced a significant enhancement of brain AChE activity and brain oxidative stress (an increase in TBARS and a decrease in GSH) levels. Treatment of erythropoietin (500 and 1,000 IU/Kg i.p.) significantly reversed scopolamine- as well as streptozotocin-induced learning and memory deficits along with attenuation of those-induced rise in brain AChE activity and brain oxidative stress levels. It may be concluded that erythropoietin exerts a beneficial effect in memory deficits of mice possibly through its multiple actions including potential anti-oxidative effect.

Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

  • Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.93-115
    • /
    • 2019
  • The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.

Convolutional Neural Network-Based Automatic Segmentation of Substantia Nigra on Nigrosome and Neuromelanin Sensitive MR Images

  • Kang, Junghwa;Kim, Hyeonha;Kim, Eunjin;Kim, Eunbi;Lee, Hyebin;Shin, Na-young;Nam, Yoonho
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권3호
    • /
    • pp.156-163
    • /
    • 2021
  • Recently, neuromelanin and nigrosome imaging techniques have been developed to evaluate the substantia nigra in Parkinson's disease. Previous studies have shown potential benefits of quantitative analysis of neuromelanin and nigrosome images in the substantia nigra, although visual assessments have been performed to evaluate structures in most studies. In this study, we investigate the potential of using deep learning based automatic region segmentation techniques for quantitative analysis of the substantia nigra. The deep convolutional neural network was trained to automatically segment substantia nigra regions on 3D nigrosome and neuromelanin sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, the mean calculated dice similarity coefficient between manual and deep learning was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low due to empirically drawn margins, selected slices were overlapped for more than two slices of all subjects. Our results demonstrate that deep convolutional neural network-based method could provide reliable localization of substantia nigra regions on neuromelanin and nigrosome sensitive MR images.

Volume-sharing Multi-aperture Imaging (VMAI): A Potential Approach for Volume Reduction for Space-borne Imagers

  • Jun Ho Lee;Seok Gi Han;Do Hee Kim;Seokyoung Ju;Tae Kyung Lee;Chang Hoon Song;Myoungjoo Kang;Seonghui Kim;Seohyun Seong
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.545-556
    • /
    • 2023
  • This paper introduces volume-sharing multi-aperture imaging (VMAI), a potential approach proposed for volume reduction in space-borne imagers, with the aim of achieving high-resolution ground spatial imagery using deep learning methods, with reduced volume compared to conventional approaches. As an intermediate step in the VMAI payload development, we present a phase-1 design targeting a 1-meter ground sampling distance (GSD) at 500 km altitude. Although its optical imaging capability does not surpass conventional approaches, it remains attractive for specific applications on small satellite platforms, particularly surveillance missions. The design integrates one wide-field and three narrow-field cameras with volume sharing and no optical interference. Capturing independent images from the four cameras, the payload emulates a large circular aperture to address diffraction and synthesizes high-resolution images using deep learning. Computational simulations validated the VMAI approach, while addressing challenges like lower signal-to-noise (SNR) values resulting from aperture segmentation. Future work will focus on further reducing the volume and refining SNR management.