References
- Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N., and Genc, U., Anomalib: A deep learning library for anomaly detection, International Conference on Image Processing, 2022, pp. 1706-1710.
- Batzner, Kilian, Lars Heckler, and Rebecca Konig, Efficientad: Accurate visual anomaly detection at millisecond-level latencies, ArXiv: 2303.14535, 2023.
- Bergmann, P., Fauser, M., Sattlegger, D., and Steger, C., MVTec AD-A comprehensive real-world dataset for unsupervised anomaly detection, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9592-9600.
- COHEN, Niv; HOSHEN, and Yedid, Sub-image anomaly detection with deep pyramid correspondences, ArXiv: 2005.02357, 2020.
- Cui, Y., Liu, Z., and Lian, S., A Survey on Unsupervised Anomaly Detection Algorithms for Industrial Images, IEEE Access, 2023.
- Defard, T., Setkov, A., Loesch, A., and Audigier, R., Padim: A Patch Distribution Modeling Framework for Anomaly Detection and Localization, International Conference on Pattern Recognition, 2021, pp. 475-489.
- Deng, H. and Li, X., Anomaly detection via reverse distillation from one-class embedding, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9737-9746.
- Ehret, T., Davy, A., Morel, J. M., and Delbracio, M., Image anomalies: A review and synthesis of detection methods, Journal of Mathematical Imaging and Vision, 2019, Vol. 61, pp. 710-743. https://doi.org/10.1007/s10851-019-00885-0
- Gudovskiy, D., Ishizaka, S., and Kozuka, K., Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 98-107.
- Guo, Y., Zeng, Y., Gao, F., Qiu, Y., Zhou, X., Zhong, L., and Zhan, C., Improved YOLOv4-CSP algorithm for detection of bamboo surface sliver defects with extreme aspect ratio, IEEE Access, 2022, Vol. 10, pp. 29810-29820. https://doi.org/10.1109/ACCESS.2022.3152552
- Hao, R., Lu, B., Cheng, Y., Li, X., and Huang, B., A Steel Surface Defect Inspection Approach Towards Smart Industrial Monitoring, Journal of Intelligent Manufacturing, 2021, Vol. 32, pp. 1833-1843. https://doi.org/10.1007/s10845-020-01670-2
- https://www.mvtec.com/company/research/datasets/mvtec-ad (2022.11.26 access).
- Kim, G.N., Kim, S.H., Joo, I., and Yoo, K.H., Detection of Color Contact Lens Defects using Various CNN Models, Journal of The Korea Contents Association, 2022, Vol. 22, No. 12, pp. 160-170. https://doi.org/10.5392/JKCA.2022.22.12.160
- Kim, Y.D., Kim, N.K., and Wang, G.N., Determination of Defective Products based on DBSCAN using Temperature Data of Manufacturing Sites, The Korean Society of Manufacturing Technology Engineers, 2020, pp. 126-126.
- Kingma, D.P. and Welling, M., Auto-encoding variational bayes, ArXiv:1312.6114, 2013.
- Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., and Grundmann, M., Mediapipe: A framework for building perception pipelines, ArXiv:1906.08172, 2019.
- Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Asymmetric student-teacher networks for industrial anomaly detection, Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 2592-2602.
- Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., and Foresti, G.L., VT-ADL: A vision transformer network for image anomaly detection and localization, IEEE 30th International Symposium on Industrial Electronics (ISIE), 2021, pp. 01-06.
- Pang, G., Shen, C., Cao, L., and Hengel, A.V.D., Deep learning for anomaly detection: A review, ACM Computing Surveys (CSUR), 2021, Vol. 54, No. 2, pp. 1-38. https://doi.org/10.1145/3439950
- Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., You only look once: Unified, real-time object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779-788.
- Roth, K., Pemula, L., Zepeda, J., Scholkopf, B., Brox, T., and Gehler, P., Towards total recall in industrial anomaly detection, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14318-14328.
- Rudolph, M., Wandt, B., and Rosenhahn, B., Same same but differnet: Semi-supervised defect detection with normalizing flows, Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1907-1916.
- Son, J.H. and Kim, C.O., A Study on the Application of Deep Learning Models for Real-time Defect Detection in the Manufacturing Process - Cases of Defect detection in the Label Printing Process, Journal of Korea Technical Association of the Pulp and Paper Industry, 2021, Vol. 53, No. 5, pp. 74-81. https://doi.org/10.7584/JKTAPPI.2021.10.53.5.74
- Um, I.S., Jeong, J.H., and Choi, Y.J., Root Cause Analysis and Process Condition Optimization of MEA Manufacturing Systems Using XAI and Bayesian Optimization, Korean Institute of Industrial Engineers, 2023, pp. 2205-2209.
- Wang, G., Han, S., Ding, E., and Huang, D., Student-teacher feature pyramid matching for anomaly detection, ArXiv:2013.04257, 2021.
- Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., and Tang, S., Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges, Materials, 2020, Vol. 13, No. 24, p. 5755.
- Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., and Wu, L., Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows, ArXiv:2111.07677, 2021.
- Zavrtanik, V., Kristan, M., and Skocaj, D., Draem-a discriminatively trained reconstruction embedding for surface anomaly detection, Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 8330-8339.