• 제목/요약/키워드: potential induced degradation

검색결과 216건 처리시간 0.025초

Effect of Cinnamomum Cassia on Cartilage Protection in Rabbit and Human Articular Cartilage

  • Baek, Yong-Hyeon;Huh, Jeong-Eun;Lee, Jae-Dong;Choi, Do-Young;Park, Dong-Suk
    • 대한한의학회지
    • /
    • 제28권4호
    • /
    • pp.148-157
    • /
    • 2007
  • Background & Objective: Articular cartilage is a potential target for drugs designed to inhibit the activity of matrix metalloproteinases (MMPs) to stop or slow the destruction of the proteoglycanand collagen in the cartilage extracellular matrix. The purpose of this study was to investigate the effects of Cinnamomum cassia in inhibiting the release of glycosaminoglycan (GAG), the degradation of collagen, and MMP activity in rabbit and human articular cartilage explants. Methods: The cartilage-protective effects of Cinnamomum cassia were evaluated by using glycosaminoglycan degradation assay, collagen degradation assay, colorimetric analysis of MMP activity, measurement of lactate dehydrogenase activity and histological analysis in rabbit cartilage explants culture. Results: Interleukin-1a (IL-1a) rapidly induced GAG, but collagen was much less readily released from cartilage explants. Cinnamomum cassia significantly inhibited GAG and collagen release in a concentration-dependent manner. Cinnamomum cassia dose-dependently inhibited MMP-1, MMP-3 and MMP-13 activities from IL-1a-treated cartilage explants culture when tested at concentrations ranging from 0.02 to 1 mg/ml. Conclusion : These results indicate that Cinnamomum cassia inhibits the degradation of proteoglycan and collagen through the down regulation of MMP-1, MMP-3 and MMP-13 activities of IL-1a-stimulated rabbit and human articular cartilage explants.

  • PDF

인간 대장암 세포에 대한 먹넌출 추출물의 GSK3β 의존성 threonine-286 인산화를 통한 Cyclin D1 분해 (Berchemia floribunda-mediated Proteasomal Degradation of CyclinD1 via GKS3β-dependent Threonine-286 Phosphorylation in Human Colorectal Cancer Cells)

  • 강연경;어현지;김다솜;박영기;송정호;박광훈
    • 한국자원식물학회지
    • /
    • 제33권4호
    • /
    • pp.271-278
    • /
    • 2020
  • 이상의 연구 결과로 먹넌출 열매 추출물은 GSK3β 의존성 Cyclin D1 단백질의 분해를 통해 대장암세포의 생육 억제와 관련이 있는 것으로 확인된다. 본 결과는 대장암의 항암제 개발을 위한 소재로 먹넌출 열매의 활용이 가능할 것으로 판단된다.

Vaccinium oldhamii Stems Inhibit Pro-inflammatory Response and Osteoclastogenesis through Inhibition of NF-κB and MAPK/ATF2 Signaling Activation in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.67-67
    • /
    • 2019
  • Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of ${\alpha}$-amylase and acetylcholinesterase. However, the anti-inflammatory activity of V. oldhamii has not been studied. In this study, we aimed to investigate anti-inflammatory activity of the stem extracts from V. oldhamii, and to elucidate the potential mechanisms in LPS-stimulated RAW264.7 cells. Among VOS, VOL and VOF, the inhibitory effect of NO and PGE2 production induced by LPS was highest in VOS treatment. Thus, VOS was selected for the further study. VOS dose-dependently blocked LPS-induced NO and PGE2 production by inhibiting iNOS and COX-2 expression, respectively. VOS inhibited the expression of pro-inflammatory cytokines such as $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. In addition, VOS suppressed TRAP activity and attenuated the expression of the osteoclast-specific genes such as NFATc1, c-FOS, TRAP, MMP-9, cathepsin K, CA2, OSCAR and ATPv06d2. VOS inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. VOS inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, VOS inhibited ATF2 phosphorylation and blocked ATF2 nuclear accumulation. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

  • PDF

Autophagic Degradation of Caspase-8 Protects U87MG Cells Against H2O2-induced Oxidative Stress

  • Zhang, Yi-Bo;Zhao, Wei;Zeng, Rui-Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4095-4099
    • /
    • 2013
  • Oxidative stress induces apoptosis in many cellular systems including glioblastoma cells, with caspase-8 activation was regarded as a major contribution to $H_2O_2$-induced cell death. This study focused on the role of the autophagic protein p62 in $H_2O_2$-induced apoptosis in U87MG cells. Oxidative stress was applied with $H_2O_2$, and cell apoptosis and viability were measured with use of caspase inhibitors or autophagic mediators or siRNA p62, GFP-p62 and GFP-p62-UBA (del) transfection. We found that $H_2O_2$-induced U87MG cell death was correlated with caspase-8. To understand the role of p62 in MG132-induced cell death, the levels of p62/SQSTM1 or autophagy in U87MG cells were modulated with biochemical or genetic methods. The results showed that the over-expression of wild type p62/SQSTM1 significantly reduced $H_2O_2$ induced cell death, but knockdown of p62 aggravated the process. In addition, inhibition of autophagy promoted p62 and active caspase-8 increasing $H_2O_2$-induced apoptosis while induction of autophagy manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 required its C-terminus UBA domain to attenuate $H_2O_2$ cytotoxity by inhibition of caspase-8 activity. Our results indicated that p62/SQSTM1 was a potential contributor to mediate caspase-8 activation by autophagy in oxidative stress process.

Zerovalent Iron에 의해 유도되는 제초제 Dicamba의 산화적 분해 (Oxidative Degradation of the Herbicide Dicamba Induced by Zerovalent Iron)

  • 이경환;김태화;김장억
    • 한국환경농학회지
    • /
    • 제27권1호
    • /
    • pp.86-91
    • /
    • 2008
  • 물에 대한 용해도가 높아 수질오염을 시킬 가능성이 있는 제초제 dicamba를 분해시키기 위하여 zerovalent iron 및 Fenton reagent를 처리하여 분해되는 정도와 분해산물을 동정하였다. ZVI에 의한 dicamba의 분해 반응속도는 pH 3.0이 pH 5.0 조건보다 빠르게 진행되었으며 처리된 ZVI의 양이 0.05%에서 1.0%(w/v)로 증가됨에 따라 분해율이 증가되어 반응 3시간 이내에 90% 이상이 분해되었다. 그러나 ZVI의 처리량이 증가됨에 따라 반응후 용액의 pH 상승으로 인하여 dicamba의 분해효율은 증가되지 않았다. ZVI 처리에 의해 생성된 dicamba의 분해 산물을 diazomethane 유도체화 과정을 거쳐 GC-MS로 분석한 결과 dicamba 구조내의 잔기가 없는 부분에 hydroxylation된 형태인 4-hydroxy dicamba 혹은 5-hydroxy dicamba, 4,5-dihydroxy dicamba 그리고 dicamba 구조내의 carboxyl기가 hydroxyl기로 전환된 형태인 3,6-dichloro-2-methoxyphenol로 예상되는 compound를 확인하였다. 이러한 반응산물은 ferric sulfate를 이용한 Fenton 반응에서 조사된 dicamba의 분해 산물과 동일한 것으로 확인되었다. 그러나 ZVI에 의한 dicamba의 탈염소화 분해산물은 확인되지 않았다. 따라서 호기적 조건 하에서 ZVI 처리에 의해 유도되는 제초제 dicamba의 주된 분해 경로는 환원반응보다는 반응용액 중에 존재하는 $O_2$$Fe^0$의 산화에 의해 생성된 $Fe^{2+}$ 사이의 Fenton 반응과 같은 산화반응인 것으로 사료된다.

Curcumin suppresses the production of interleukin-6 in Prevotella intermedia lipopolysaccharide-activated RAW 264.7 cells

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • 제41권3호
    • /
    • pp.157-163
    • /
    • 2011
  • Purpose: Curcumin is known to exert numerous biological effects including anti-inflammatory activity. In this study, we investigated the effects of curcumin on the production of interleukin-6 (IL-6) by murine macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a major cause of inflammatory periodontal disease, and sought to determine the underlying mechanisms of action. Methods: LPS was prepared from lyophilized P. intermedia ATCC 25611 cells by the standard hot phenol-water method. Culture supernatants were collected and assayed for IL-6. We used real-time polymerase chain reaction to detect IL-6 mRNA expression. $I{\kappa}B-{\alpha}$ degradation, nuclear translocation of NF-${\kappa}B$ subunits, and STAT1 phosphorylation were characterized via immunoblotting. DNA-binding of NF-${\kappa}B$ was also analyzed. Results: Curcumin strongly suppressed the production of IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW 264.7 cells. Curcumin did not inhibit the degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS. Curcumin blocked NF-${\kappa}B$ signaling through the inhibition of nuclear translocation of NF-${\kappa}B$ p50 subunit. Curcumin also attenuated DNA binding activity of p50 and p65 subunits and suppressed STAT1 phosphorylation. Conclusions: Although further study is required to explore the detailed mechanism of action, curcumin may contribute to blockade of the host-destructive processes mediated by IL-6 and appears to have potential therapeutic values in the treatment of inflammatory periodontal disease.

Biodegradation of Aromatic Compounds by Nocardioform Actinomycetes

  • CHA CHANG-JUN;CERNIGLIA CARL E.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2001년도 추계학술대회
    • /
    • pp.157-163
    • /
    • 2001
  • Mycolic acid-containing gram-positive bacteria, so called nocardioform actinomycetes, have become a great interest to environmental microbiologists due to their metabolic versatility, multidegradative capacity and potential for bioremediation of priority pollutants. For example, Rhodococcus rhodochrous N75 was able to metabolize 4-methy1catechol via a modified $\beta$-ketoadipate pathway whereby 4-methylmuconolactone methyl isomerase catalyzes the conversion of 4-methylmuconolactone to 3-methylmuconolactone in order to circumvent the accumulation of the 'dead-end' metabolite, 4-methylmuconolactone. R. rhodochrous N75 has also shown the ability to transform a range of alkyl-substituted catechols to the corresponding muconolactones. A novel 3-methylmuconolactone-CoAsynthetase was found to be involved in the degradation of 3-methylmuconolactone, which is not mediated in a manner analogous to the classical $\beta$-ketoadipate pathway but activated by the addition of CoA prior to hydrolysis of lactone ring, suggesting that the degradative pathway for methylaromatic compounds by gram-positive bacteria diverges from that of proteobacteria. Mycobacterium sp. Strain PYR-l isolated from oil-contaminated soil was capable of mineralizing various polyaromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, pyrene, fluoranthrene, 1-nitropyrene, and 6-nitrochrysene. The pathways for degradation of PAHs by this organism have been elucidated through the isolation and characterization of chemical intermediates. 2-D gel electrophoresis of PAH-induced proteins enabled the cloning of the dioxygenase system containing a dehydrogenase, the dioxygenase small ($\beta$)-subunit, and the dioxygenase large ($\alpha$)-subunit. Phylogenetic analysis showed that the large a subunit did not cluster with most of the known sequences except for three newly described a subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. 2-D gel analysis also showed that catalase-peroxidase, which was induced with pyrene, plays a role in the PAH metabolism. The survival and performance of these bacteria raised the possibility that they can be excellent candidates for bioremediation purposes.

  • PDF

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

The Histone Deacetylase Inhibitor Trichostatin A Sensitizes Human Renal Carcinoma Cells to TRAIL-Induced Apoptosis through Down-Regulation of c-FLIPL

  • Han, Min Ho;Park, Cheol;Kwon, Taek Kyu;Kim, Gi-Young;Kim, Wun-Jae;Hong, Sang Hoon;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.31-38
    • /
    • 2015
  • Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of trichostatin A (TSA), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in Caki human renal carcinoma cells. Our results indicate that nontoxic concentrations of TSA substantially enhance TRAIL-induced apoptosis compared with treatment with either agent alone. Cotreatment with TSA and TRAIL effectively induced cleavage of Bid and loss of mitochondrial membrane potential (MMP), which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase (PARP), contributing toward the sensitization to TRAIL. Combined treatment with TSA and TRAIL significantly reduced the levels of the cellular Fas-associated death domain (FADD)-like interleukin-$1{\beta}$-converting enzyme (FLICE) inhibitory protein (c-FLIP), whereas those of death receptor (DR) 4, DR5, and FADD remained unchanged. The synergistic effect of TAS and TRAIL was perfectly attenuated in c-$FLIP_L$-overexpressing Caki cells. Taken together, the present study demonstrates that down-regulation of c-FLIP contributes to TSA-facilitated TRAIL-induced apoptosis, amplifying the death receptor, as well as mitochondria-mediated apoptotic signaling pathways.

Pyrithione-zinc Prevents UVB-induced Epidermal Hyperplasia by Inducing HIF-$1{\alpha}$

  • Cho, Young-Suk;Lee, Kyung-Hoon;Park, Jong-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권2호
    • /
    • pp.91-97
    • /
    • 2010
  • Epidermal keratinocytes overgrow in response to ultraviolet-B (UVB), which may be associated with skin photoaging and cancer development. Recently, we found that HIF-$1{\alpha}$ controls the keratinocyte cell cycle and thereby contributes to epidermal homeostasis. A further study demonstrated that HIF-$1{\alpha}$ is down-regulated by UVB and that this process is involved in UVB-induce skin hyperplasia. Therefore, we hypothesized that the forced expression of HIF-$1{\alpha}$ in keratinocytes would prevent UVB-induced keratinocyte overgrowth. Among several agents known to induce HIF-$1{\alpha}$, pyrithione-zinc (Py-Zn) overcame the UVB suppression of HIF-$1{\alpha}$ in cultured keratinocytes. Mechanistically, Py-Zn blocked the degradation of HIF-$1{\alpha}$ protein in keratinocytes, while it did not affect the synthesis of HIF-$1{\alpha}$. Moreover, the p21 cell cycle inhibitor was down-regulated after UVB exposure, but was robustly induced by Py-Zn. In mice repeatedly irradiated with UVB, the epidermis became hyperplastic and HIF-$1{\alpha}$ disappeared from nuclei of epidermal keratinocytes. However, a cream containing Py-Zn effectively prevented the skin thickening and up-regulated HIF-$1{\alpha}$ to the normal level. These results suggest that Py-Zn is a potential agent to prevent UVB-induced photoaging and skin cancer development. This work also provides insight into a molecular target for treatment of UVB-induced skin diseases.