• Title/Summary/Keyword: potential gradient

Search Result 444, Processing Time 0.03 seconds

Density Functional Study on Correlation between Magnetism and Crystal Structure of Fe-Al Transition Metal Compounds (Fe-Al 전이금속 화합물의 자성과 결정구조의 상관관계에 대한 밀도범함수연구)

  • Yun, Won-Seok;Kim, In-Gee
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.43-47
    • /
    • 2011
  • It is known that the Fe-Al transition metal compounds have a lot of disagreement about structural stability and magnetism. In this study, the correlation between magnetism and atomic structure of ordered $B_2$, $L1_2$, and $D0_3$ structured Fe-Al compounds has been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) method based on the generalized gradient approximation (GGA). We found that considered all the structures were calculated to be stabilized in a ferromagnetic state. The calculated spin magnetic moments of the Fe atoms for B2 and $L1_2$ structures were 0.771 and 2.373 ${\mu}_B$, respectively, and that of Fe(I) and Fe(II) in $D0_3$ structure calculated to be 2.409 ${\mu}_B$, 1.911 ${\mu}_B$, respectively. In order to investigate structural stability between $L1_2$ and $D0_3$ structures, we performed the formation enthalpy calculations. As a result, the $D0_3$ structure is found to be more favorable than $L1_2 one by energy difference 16 meV/atom, which is well consistent with the experimental observation. We understood about structural stability and magnetism for Fe-Al compounds in terms of analysis of their atomic and electronic structures.

Where is the coronal loop plasma located, within a flux rope or between flux ropes?

  • Lim, Daye;Choe, G.S.;Yi, Sibaek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.3-67
    • /
    • 2015
  • Without scrutinizing reflection, the plasma comprising a coronal loop is usually regarded to reside within a flux rope. This picture seems to have been adopted from laboratory plasma pinches, in which a plasma of high density and pressure is confined in the vicinity of the flux rope axis by magnetic tension and magnetic pressure of the concave inward magnetic field. Such a configuration, in which the plasma pressure gradient and the field line curvature vector are almost parallel, however, is known to be vulnerable to ballooning instabilities (to which belong interchange instabilities as a subset). In coronal loops, however, ideal MHD (magnetohydrodynamic) ballooning instabilities are impeded by a very small field line curvature and the line-tying condition. We, therefore, focus on non-ideal (resistive) effects in this study. The footpoints of coronal loops are constantly under random motions of convective scales, which twist individual loop strands quite randomly. The loop strands with the axial current of the same direction tend to coalesce by magnetic reconnection. In this reconnection process, the plasma in the loop system is redistributed in such a way that a smaller potential energy of the system is attained. We have performed numerical MHD simulations to investigate the plasma redistribution in coalescence of many small flux ropes. Our results clearly show that the redistributed plasma is more accumulated between flux ropes rather than near the magnetic axes of flux ropes. The Joule heating, however, creates a different temperature distribution than the density distribution. Our study may give a hint of which part of magnetic field we are looking to in an observation.

  • PDF

Evaluation and Characterization of Milk-derived Microvescicle Isolated from Bovine Colostrum

  • Maburutse, Brighton E.;Park, Mi-Ri;Oh, Sangnam;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.654-662
    • /
    • 2017
  • Extracellular microvesicles are membranous nano-sized cellular organelles secreted by a variety of cells under normal and pathological conditions and heterogeneous in size ranging from 30 nm to $1{\mu}m$. They carry functional microRNAs that can influence immunity and development. For a particular application of microvesicles, choice of isolation method is particularly important; however, their isolation methods from colostrum in particular have not been described clearly. In this work, differential ultracentrifugation as a conventional method, ultracentrifugation with some modification such as additional precipitations, ultrafiltration, sucrose gradient separation and ExoQuick$^{TM}$ as a commercial reagent were compared. The goal was to compare mainly microvesicular total microRNA yield, distribution and purity among the methods then select the best isolation method for bovine colostrum microvesicles based largely on microRNA yield with the view of applying the vesicles in work where vesicular microRNA cargo is the target bioactive component. Highest yields for vesicular microRNA were obtained using conventional methods and among them, subsequent ultracentrifugation with 100,000 g and 135,000 g conventional method 2 was selected as it had the highest RNA to protein ratio indicating that it pelleted the least protein in relation to RNA an important factor for in vivo applications to assess microvesicle functionalities without risk of contaminating non-vesicular biomaterial. Microvesicles isolated using conventional method 2 were successfully internalized by cells in vitro showing their potential to deliver their cargo into cells in vitro and in vivo in case of functional studies.

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Benzair, Abdelnour;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.

Effects of supplementation cysteine-coated Fe3O4 nanoparticles compared to FeSO4, on reproductive performance in male quail

  • Abdolvand, Esmail;Farzinpour, Amjad;Vaziry, Asaad
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.15-24
    • /
    • 2020
  • Iron has a crucial role in growth as part of metalo-proteins like haemoglobin or myoglobin, enzymes; they are also involved in energetic reactions. Iron plays a vital role in fertility. At high doses, Iron has a harmful consequence on the reproductive system, which can be strongly reflected the final stage of spermatogenesis. Nutritional products are claiming to use nanotechnology and it is important to recognize the potential toxicity of nano-sized nutrients. Recently iron nanoparticles were proposed as a food additive for poultry. The objective of this study was to investigate the effects of L-cystein coated iron oxide nanoparticles on reproductive performance in male quails. The results of Fourier Transform Infrared Spectrometer, Alternating Gradient Force Magnetometer and Scaning Electron Microscopy showed that iron oxide nanoparticles was produced and have been coated with L-cycstein (Fe3O4-Cys NPs). A total of 100 one-week-old quail chicks were randomly placed to five groups of five replicates. Four quails (two male and two females) were raised in an individual cage for each replicate. The five experimental treatment diets consisted; negative control diet, with no Iron supplementation; positive control diet supplemented with 60 mg/kg of Fe3O4; treatment diets supplemented with 0.6, 6 and 60 mg/kg of L-cystein coated iron oxide nanoparticles. The hemoglobin, Red blood cell, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, gonadal somatic index, daily sperm production, total testicular sperm and sperm viability of the male quails that were fed with diet supplemented by 0.6 mg/kg of Fe3O4-Cys NPs were improved as compare with negative control. This study showed that not only the use of the Fe3O4-Cys nanoparticles had no side effects but also it can be used as a feed additive to improve the reproductive performance in male quails.

Expression of AGR-2 in Chicken Oviduct during Laying Period

  • Kim, Nam-Soo;Shen, Yan-Nan;Kim, Tae-Yoon;Byun, Sung-June;Jeon, Ik-Soo;Kim, Sang-Hoon
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.212-217
    • /
    • 2007
  • The chicken oviduct is a dynamic organ that produces secretory proteins such as ovalbumin during the laying period. In this study, we identified oviduct-specific proteins in hens during the egg-laying period by proteomic analysis. Proteins extracted from the magnum of hens of different ages (5, 35, and 65 weeks) were analyzed by two-dimensional gel electrophoresis to compare the intensity of proteins among samples. Approximately 300 spots were detected on each gel. Based on the comparison of image gels, we found that the intensity of eight spots in 35-week magnums was increased at least by 2-fold compared with the others. Five of the eight spots were identified as calumenin, acidic ribosomal phosphoproteins (ARP), prohibitin, heart fatty acid-binding protein, and anterior gradient-2 (AGR-2). In particular, ARP and AGR-2 were highly expressed in 35- week magnums compared with 5- and 65-week magnums. In addition, the level of these proteins was consistent with their RNA levels. Expression of AGR-2 mRNA was detected in the mature magnum, whereas no signal was observed in premature tissue. Among various tissues, expression of AGR-2 mRNA was highest in the magnum, high in the isthmus, and five fold lower in muscle. It was undetectable in the liver and in other tissues (heart and kidney). However, the mRNA levels of other proteins were ubiquitous among tissues. In transcriptional activity of AGR-2, a 3.0 kb fragment of promoter region containing potential estrogen receptor binding sites had enhanced its activity strongly. In conclusion, these results suggest that AGR-2 has functional regulatory roles in the chicken oviduct during the egglaying period.

Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide (이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석)

  • Kim, Junhyung;Kim, Young-Eun;Park, Myeonghwa;Song, Young Eun;Seol, Eunhee;Kim, Jung Rae;Oh, You-Kwan
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

Anti-inflammatory Activities of Lupane-triterpenoids In Vitro and Their Phytochemical Fingerprinting from Leaves of Acanthopanax gracilistylus

  • Li, Xiao Jun;Dai, Ling;Li, Zhi;Zhang, Xiao Dan;Liu, Xiang Qian;Zou, Qin Peng;Xie, Xia
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.104-110
    • /
    • 2015
  • The activities on the inhibition of NO on LPS-induced RAW 264.7 macrophages were investigated in this work. A simple and sensitive method has been developed and validated for fingerprinting analysis of leaves of Acanthopanax gracilistylus W.W. Smith (AGS). The cytotoxicity and inhibition of NO on LPS-induced RAW 264.7 cells of the extract and triterpenoids were determined. Optimal conditions of HPLC analysis were established as follows. The separation was performed with an ODS-C18 column at $30^{\circ}C$, the detected wavelength was 210 nm, the flow rate was 1 mL/min, and the mobile phase consisted of acetonitrile (0.05% phosphoric acid)-0.05% phosphoric acid solution with gradient elution. Our results showed that impressic acid and acankoreaogenin was more effective on the inhibition of NO than the methanol extract and other compounds. There were seventeen peaks coexisted with similarities above 0.95 and nine lupane-triterpenoids including acankoreaogenin and impressic acid detected and identified. The result of anti-inflammatory activities provides a potential explanation for the use of AGS leaves as a herbal medicine in the treatment of inflammatory diseases. Our results also show that acankoreanogenin and impressic acid may be potentially useful in developing new anti-inflammatory agents. In addition, the fingerprint chromatography clearly illustrated and confirmed the material basis for the anti-inflammatory activities of this plant.

An Efficient Solution Algorithm of Quadratic Programming Problems for the Structural Optimization (구조최적설계를 위한 2차계획문제의 효율적인 해법)

  • Seo, Kyung Min;Ryu, Yeon Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.59-70
    • /
    • 1992
  • Quadratic programming problems(QP) have been widely used as a direction-finding subproblem in the engineering and structural design optimization. To develop an efficient solution algorithm for the QP subproblems, theoretical aspects and numerical behavior of mathematical programming methods that can be used as QP solver are studied and compared. For the solution of both primal and dual QP, Simplex, gradient projection(GRP), and augmented Lagrange multiplier algorithms are investigated and coded. From the numerical study, it is found that the primal GRP algorithm with potential constraint strategy and the dual Simplex algorithm are more attractive and effective than the others. They have theoretical robustness as well. Moreover, primal GRP algorithm is preferable in case the number of constraints is larger than the number of design variables. Favorable features of GRP and Simplex algorithm are merged into a combined algorithm, which is useful in the structural design optimization.

  • PDF

Effect of Flow Channel Shape on Performance in Reverse Electrodialysis (유로 형상이 역전기투석 장치의 성능에 미치는 영향)

  • Kwon, Kilsung;Kim, Deok Han;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.347-352
    • /
    • 2017
  • Reverse electrodialysis (RED), which generates electrical energy from the difference in concentration of two solutions, has been actively studied owing to its high potential and the increased interest in renewable energy resulting from the Paris Agreement on climate change. For RED commercialization, its power density needs to be maximized, and therefore various methods have been discussed. In this paper, the power density was measured using various flow shapes based on the aspect ratio, opening ratio, and number of distribution channels. We found that the power density is enhanced with a decrease in the aspect ratio and an increase in the opening ratio and number of distribution channels.