• Title/Summary/Keyword: potential energy surface

Search Result 808, Processing Time 0.021 seconds

Potential Energy Surface from Spectroscopic Data in the Photodissociation of Polyatomic Molecules

  • Kim, Hwa Jung;Kim, Yeong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.455-462
    • /
    • 2001
  • The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-independent inversion method and discussed several extensions of the algorithm.

Activity Coefficients and Coulombic Correction Factor for Surface Complexation Modeling

  • Rhee, In-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.146-155
    • /
    • 2002
  • Surface complexation models employ mass law equations to describe the reaction of surface functional groups with ions in the solution and also Gouy-Chapman theory to consider the electrostatic effects in the surface reactions. In current surface complexation models, however, the coulombic factors used are not wholly consistent with the Gouy-Chapman model of the surface. This study was to provide the derivation of the coulombic term usually employed and then a revised coulombic term completely consistent with Gouy-Chapman Theory. The electrical potential energy. zF${\psi}$, in current surface complexation models is not consistent with the Gouy-Chapman theory with the potential gradient close to the charged surface but with the Donnan model with the uniform potential. Even though the new coulombic factor yielded lower surface potential, it provided worse fits for acid-base titration data of the goethite suspensions.

  • PDF

Equilibrium Thermodynamics of Chemical Reaction Coupled with Other Interfacial Reactions Such as Charge Transfer by Electron, Colligative Dissolution and Fine Dispersion: A Focus on Distinction between Chemical and Electrochemical Equilibria

  • Pyun, Su-Il;Lee, Sung-Jai;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.227-241
    • /
    • 2008
  • This article involves a unified treatment of equilibrium thermodynamics of the chemical reaction coupled with other interfacial (phase boundary) reactions. The modified (restrictive) chemical potential ${\mu}_k^+$, such as electrochemical potential, hydrostatic-chemical (mechanochemical) potential (exceptionally in the presence of the pressure difference) and surface-chemical potential, was first introduced under the isothermal and isobaric conditions. This article then enlightened the equilibrium conditions in case where the release of chemical energy is counterbalanced by the supply of electrical energy, by the supply of hydrostatic work (exceptionally in the presence of ${\Delta}p$), and finally by the release of surface energy, respectively, at constant temperature T and pressure p in terms of the modified chemical potential ${\mu}_k^+$. Finally, this paper focussed on the difference between chemical and electrochemical equilibria based upon the fundamentals of the isothermal and isobaric equilibrium conditions described above.

A Review of Surface Energy of Solid Electrodes with Emphasis on Its Controversial Issues in Interfacial Electrochemistry

  • Go Joo-Young;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • A classical Lippmann equation valid for liquid electrodes can not describe the interfacial properties of solid electrodes due to the elastic surface strain on solid electrodes. Although there have been many attempts to derive the thermodynamic equations for solid electrodes Outing the past few decades, their validity has been still questioned by many researchers. In practice, although there are various experimental techniques to measure surface energy of solid electrodes, the results obtained by each technique are rather inconsistent due to the complexity of the surface strain on solid electrodes. This article covers these controversial issues in surface energy of solid electrodes. After giving brief summaries of the definition of the important thermodynamic parameters and the derivation of the thermodynamic equations for solid electrodes, the several experimental methods were introduced for the measurement of surface energy of solid electrodes. And then we discussed in detail the inconsistent results in the measurement of the potential of zero charge (pac) and the potential of electrocapillary maximum (ecm).

A Functional Representation of the Potential Energy Surface of Non-Identical $S_N2$ Reaction: F- … $CH_3Cl \rightarrow FCH_3$ … Cl-

  • 김정섭;김영훈;노경태;이종명
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1073-1079
    • /
    • 1998
  • The potential energy surface (PES) of the non-identical SN2 reactions, F- + CH3Cl → FCH3 + Cl and (H2O)F + CH3Cl → FCH3 + Cl-(H2O), were investigated with ab initio MO calculations. The ab initio minimum energy reaction path (MERP) of the F- + CH3Cl → FCH3 + Cl- was obtained and it was expressed with an intermediate variable t. The ab initio PES was obtained near around t. Analytical potential energy function (PEF) was determined as a function of the t in order to reproduce the ab initio PES. Based on Morse-type potential energy function, a Varying Repulsive Cores Model (VRCM) was proposed for the description of the bond forming and the bond breaking which occur simultaneously during the SN2 reaction. The MERP calculated with the PEF is well agreed with the ab initio MERP and PEF could reproduce the ab initio PES well. The potential parameters for the interactions between the gas phase molecules in the reactions and water were also obtained. ST2 type model was used for the water.

Continuous Surface Treatment and Dyeability of PTT Film via $UV/O_3$ Irradiation (UV/Ozone 조사에 의한 PTT 필름의 연속식 표면처리와 염색성)

  • Jang Jinho;Park Dae Sun
    • Textile Coloration and Finishing
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Continuous and intense UV irradiation on PTT film using two types of UV bulbs at different irradiation power level was carried out to modify surface characteristics of the film including zeta potential, wettability, surface energy, and dyeability. ESCA analysis of the irradiated film showed higher O/C ratio than the untreated film indicating photooxidation of outer surface layer. ATR analysis showed that the ester bonds were broken and some new groups were produced such as carboxylic acid, phenolic hydroxy, and other esters, implying that ester bonds of PTT was responsible for the observed photooxidation effect. The surface of the treated PTT film became more hydrophilic and wettable to water, coupled with increased surface energy. Polar component of the surface energy increased and nonpolar component decreased with increasing irradiation energy. The treatment also decreased zeta potential of the modified surface and nanoscale roughness increased with increasing irradiation. The dyeability of the treated films to catonic dyes was significantly improved by electrostatic and polar interaction between dye molecules and the anionic film surface. The UV irradiation seems to be a viable polymer surface modification technology, which has advantages such as no vacuum requirement and continuous process unlike plasma treatment.

Kinetic Model on the Vacuum Deposition (眞空 蒸着에 관한 速度論的 모델)

  • Kim, Dae-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.2
    • /
    • pp.51-58
    • /
    • 1986
  • A theoretical model was proposed to predict the rate of particles impinging on the negatively biased substrate and the total kinetic energy per unit time. The model takes into an account of kinetic theory based on Maxwell statistics and elementary plasma theory, incorporated with Hertz-Knudsen's evaporation theory. It is found that as the bias potential increases the ion flux and kinetic energy increases to a value above which the effect of potential is insignificant.

  • PDF

Analytical Potential Energy Surfaces for the Four-center Elimination Feaction of HCI from 1,1-Dechlorethylene: Translational Energy Release from Classical Trajectory Studies

  • Lee, Bong U;Lee, Chang Hwan;Kim, Hong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.727-733
    • /
    • 2000
  • Analytical potential energy surfaces have been constructed for the four-center elimination of HCI from 1,1-dichloroethylene.The potential functions are Morse-type functions which are modified by appropriate switching and attenuating functions with adjustable parameters. The parameters have been found by fitting the calculated vibrational frequencies, reaction endothermicity, equlibrium geometries of the reactant and products to those of experiments and ab initio calculations. The translational energy release obtained from classical trajectory calculations on this surface is in good agreement with the experiment.

Research and Anaysis of Wave Energy Characteristic for Wave Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.520-526
    • /
    • 2006
  • Wave Energy is a derivative of the solar energy input to the earth, which is accumulated on open water surfaces by the action of the winds Waves are disturbances in the water surface. This paper is interested primarily in progressive waves, which carry energy from one place to another Waves are irregular in size and frequency. Moreover the surface of the sea is one of the most hostile environments for engineering structures and materials. The idea of harnessing the tremendous power of the ocean's waves is not new. Hundreds of wave energy conversion techniques have been suggested over the last two centuries. Although many WECS (Wave Energy Conversion Systems) have been invented, only a few systems have been tested and evaluated. This paper describes the characteristic of WES (Wave Energy System) in terms of, devices, resource and potential, etc.. Finally, this paper provides a summary of general and specific conclusions and recommendations concerning WECS potential in Korea.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.