DOI QR코드

DOI QR Code

Equilibrium Thermodynamics of Chemical Reaction Coupled with Other Interfacial Reactions Such as Charge Transfer by Electron, Colligative Dissolution and Fine Dispersion: A Focus on Distinction between Chemical and Electrochemical Equilibria

  • Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Sung-Jai (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Ju-Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2008.11.30

Abstract

This article involves a unified treatment of equilibrium thermodynamics of the chemical reaction coupled with other interfacial (phase boundary) reactions. The modified (restrictive) chemical potential ${\mu}_k^+$, such as electrochemical potential, hydrostatic-chemical (mechanochemical) potential (exceptionally in the presence of the pressure difference) and surface-chemical potential, was first introduced under the isothermal and isobaric conditions. This article then enlightened the equilibrium conditions in case where the release of chemical energy is counterbalanced by the supply of electrical energy, by the supply of hydrostatic work (exceptionally in the presence of ${\Delta}p$), and finally by the release of surface energy, respectively, at constant temperature T and pressure p in terms of the modified chemical potential ${\mu}_k^+$. Finally, this paper focussed on the difference between chemical and electrochemical equilibria based upon the fundamentals of the isothermal and isobaric equilibrium conditions described above.

Keywords

References

  1. K. Denbigh, 'The Principles of Chemical Equilibrium', Cambridge University Press, UK, 72-76, 163-169 (1981)
  2. S. Glasstone and D. Lewis, 'Elements of Physical Chemistry', Princeton N.J., Van Nostrand, Chapter 13 (emf) (1960)
  3. D. V. Ragone, 'Thermodynamics of Materials', John Wiley & Sons, New York, Chapter 6 (1995)
  4. D. R. Gaskell, 'Introduction to the Thermodynamics of Materials', Taylor & Francis, New York, Chapter 15 (2003)
  5. S.-I. Pyun, 'Equilibrium Thermodynamics of Materials at Non-pVT System', 2nd revised & enlarged edition, Gijeon Pub. Co., Seoul, Chapters 3, 4, and 6 (2008)
  6. E. A. Guggenheim, 'The Conceptions of Electrical Potential Difference Between Two Phases and the Individual Activities of Ions', J. Phys. Chem., 33, 842 (1929) https://doi.org/10.1021/j150300a003
  7. R. Haase, 'Elektrochemie I', Dr. Dietrich Steinkopff Verlag, Darmstadt, 6-10 (1972)
  8. E. A. Guggenheim, 'Thermodynamics', 8th edition, North- Holland Publishing Co., Amsterdam, Chapter 8 (1986)
  9. E. M. Gutman, 'Mechanochemsitry of Materials', Cambridge Intern. Sci. Pub., Cambridge, 64-68 (1998)
  10. H.-H. Moebius, 'Chemische Thermodynamik', VEB Deutscher Verlag fuer Grundstoffindustrie, Leipzig, 235- 243 (1973)
  11. H.-C. Shin and S.-I. Pyun, 'An Investigation of the Electrochemical Intercalation of Lithium into a $Li_{1-\delta}CoO_{2}$ Electrode Based upon Numerical Analysis of Potentiostatic Current Transients', Electrochim. Acta, 44, 2235 (1999) https://doi.org/10.1016/S0013-4686(98)00340-5
  12. H.-C. Shin, S.-I. Pyun, S.-W. Kim, and M.-H. Lee, 'Mechanisms of Lithium Transport through Transition Metal Oxides Studied by Analysis of Current Transients', Electrochim. Acta, 46, 897 (2001) https://doi.org/10.1016/S0013-4686(00)00676-9
  13. S.-W. Kim and S.-I. Pyun, 'Lithium Transport Through a Sol-Gel Derived $Li_{1-\delta}Mn_{2}O_{4}$ Film Electrode: Analyses of Potentiostatic Current Transient and Linear Sweep Voltammogram by Monte Carlo Simulation', Electrochim. Acta, 47, 2843 (2002) https://doi.org/10.1016/S0013-4686(02)00173-1
  14. S.-W. Kim and S.-I. Pyun, 'Analysis of Cell Impedance Measured on the $LiMn_{2}O_{4}$ Film Electrode by PITT and EIS with Monte Carlo Simulation', J. Electroanal. Chem., 528, 114 (2002) https://doi.org/10.1016/S0022-0728(02)00900-2
  15. J.-W. Lee and S.-I. Pyun, 'Investigation of Lithium Transport through an Electrodeposited Vanadium Pentoxide Film Electrode', J. Power Sources, 119-121, 760 (2003) https://doi.org/10.1016/S0378-7753(03)00217-9
  16. J.-Y. Go and S.-I. Pyun, 'A Study on Lithium Transport through Fractal $Li_{1-\delta}CoO_{2}$ Film Electrode by Analysis of Current Transient Based upon Fractal Theory', Electrochim. Acta, 49, 2551 (2004) https://doi.org/10.1016/j.electacta.2004.02.012
  17. J.-Y. Go, S.-I. Pyun, and S.-I. Cho, 'An Experimental Study on Cell-Impedance-Controlled Lithium Transport through $Li_{1-\delta}CoO_{2}$ Film Electrode with Fractal Surface by Analyses of Potentiostatic Current Transient and Linear Sweep Voltammogram', Electrochim. Acta, 50, 5435 (2005) https://doi.org/10.1016/j.electacta.2005.03.025
  18. K.-N. Jung and S.-I. Pyun, 'The Cell-Impedance-Controlled Lithium Transport Through $LiMn_{2}O_{4}$ Film Electrode with Fractal Surface by Analyses of Ac-Impedance Spectra, Potentiostatic Current Transient and Linear Sweep Voltammogram', Electrochim. Acta, 51, 4649 (2006) https://doi.org/10.1016/j.electacta.2005.12.045
  19. J.-Y. Go and S.-I. Pyun, 'A Review of Anomalous Diffusion Phenomena at Fractal Interface for Diffusion- Controlled and Non-Diffusion-Controlled Transfer Processes', J. Solid State Electrochem., 11, 323 (2007) https://doi.org/10.1007/s10008-005-0084-9
  20. K.-N. Jung and S.-I. Pyun, 'Mechanism Transition of Cell-Impedance-Controlled Lithium Transport through $Li_{1-\delta}Mn_{2}O_{4}$ Composite Electrode Caused by Surface- Modification and Temperature Variation', Electrochim. Acta, 52, 5453 (2007) https://doi.org/10.1016/j.electacta.2007.02.078
  21. J.-N. Han, M. Seo, and S.-I. Pyun, 'Analysis of Anodic Current Transient and Beam Deflection Transient Simulta -neously Measured from Pd Foil Electrode Pre-charged with Hydrogen', J. Electroanal. Chem., 499, 152 (2001) https://doi.org/10.1016/S0022-0728(00)00506-4
  22. S.-I. Pyun, J.-W. Lee, and J.-N. Han, 'The Kinetics of Hydrogen Transport through Pd Foil Electrode in the Coexistence of Two Hydride Phases by Analysis of Anodic Current Transient', J. New Mat. Electrochem. Sys., 5, 243 (2002)
  23. J.-W. Lee, S.-I. Pyun, and S. Filipek, 'The Kinetics of Hydrogen Transport through Amorphous $Pd_{82-y}Ni_{y}Si_{18}$ Alloys (y = 0-32) by Analysis of Anodic Current Transient', Electrochim. Acta, 48, 1603 (2003) https://doi.org/10.1016/S0013-4686(03)00085-9
  24. S.-J. Lee, S.-I. Pyun, and J.-W. Lee, 'Investigation of Hydrogen Transport through Mm$(Ni_{3.6}Co_{0.7}Mn_{0.4}Al_{0.3)1.12}$ and $Zr_{0.65}Ti_{0.35}Ni_{1.2}V_{0.4}Mn_{0.4}$ Hydride Electrodes by Analysis of Anodic Current Transient', Electrochim. Acta, 50, 1121 (2005) https://doi.org/10.1016/j.electacta.2004.08.009
  25. J.-W. Lee and S.-I. Pyun, 'Anomalous Behaviour of Hydrogen Extraction from Hydride-Forming Metals and Alloys under Impermeable Boundary Conditions', Electrochim. Acta, 50, 1777 (2005) https://doi.org/10.1016/j.electacta.2004.08.046
  26. J.-W. Lee and S.-I. Pyun, 'A Study on the Potentiostatic Current Transient and Linear Sweep Voltammogram Simulated from Fractal Intercalation Electrode: Diffusion Coupled with Interfacial Charge Transfer', Electrochim. Acta, 50, 1947 (2005) https://doi.org/10.1016/j.electacta.2004.09.005
  27. J.-W. Lee and S.-I. Pyun, 'Analysis of Anodic Current Transient Measured on Pd Electrode with Fractal Surface: Hydrogen Diffusion Coupled with Interfacial Charge Transfer', Electrochim. Acta, 51, 694 (2005) https://doi.org/10.1016/j.electacta.2005.05.039
  28. S.-J. Lee and S.-I. Pyun, 'Effect of Annealing Temperature on Mixed Proton Transport and Charge Transfer-Controlled Oxygen Reduction in Gas Diffusion Electrode', Electrochim. Acta, 52, 6525 (2007) https://doi.org/10.1016/j.electacta.2007.04.081
  29. S.-K. Lee, S.-I. Pyun, S.-J. Lee, and K.-N. Jung, 'Mechanism Transition of Mixed Diffusion and Charge Transfer- Controlled to Diffusion-Controlled Oxygen Reduction at Pt-Dispersed Carbon Electrode by Pt Loading, Nafion Content and Temperature', Electrochim. Acta, 53, 740 (2007) https://doi.org/10.1016/j.electacta.2007.07.042
  30. S.-J. Lee and S.-I. Pyun, 'Oxygen Reduction Kinetics in Nafion-Impregnated Gas Diffusion Electrode under Mixed Control Using EIS and PCT', J. Electrochem. Soc., 155, B1274 (2008) https://doi.org/10.1149/1.2987944
  31. Y.-M. Kim, S.-I. Pyun, J.-S. Kim, and G.-J. Lee, 'Mixed Diffusion and Charge-Transfer-Controlled Oxygen Reduction on Dense $La_{1-x}Sr_{x}Co_{0.2}Fe_{0.8}O_{3-\delta}$ Electrodes with Various Sr Contents', J. Electrochem. Soc., 154, B802 (2007) https://doi.org/10.1149/1.2744135
  32. J.-S. Kim and S.-I. Pyun, 'Effects of Secondary Phase and Electrode Thickness on Mixed Ion Migration and Charge Transfer-Controlled Oxygen Reduction at Dense $(La_{0.85}Sr_{0.15)0.9}MnO_{3}$-YSZ Composite Electrode', J. Electrochem. Soc., 155, B8 (2008) https://doi.org/10.1149/1.2799084
  33. J.-S. Kim, S.-I. Pyun, H.-C. Shin, and S.-J. L. Kang, 'Oxygen Reduction Kinetics at Dense $(La_{0.85}Sr_{0.15)0.9}MnO_{3}$-YSZ Composite Electrodes Investigated Using Potentiostatic Current Transient Method', J. Electrochem. Soc., 155, B762 (2008) https://doi.org/10.1149/1.2926509
  34. J.-S. Kim and S.-I. Pyun, 'Kinetics of Oxygen Reduction at Porous $(La_{0.85}Sr_{0.15)0.9}MnO_{3}$ -YSZ Composite Electrodes with Patterned YSZ Cluster', Electrochim. Acta (2008) in press