• Title/Summary/Keyword: potential core

Search Result 810, Processing Time 0.028 seconds

Analysis on Current Limiting Characteristics According to the Influence of the Magnetic Flux for SFCL with Two Magnetic Paths

  • Ko, Seok-Cheol;Han, Tae-Hee;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1909-1913
    • /
    • 2014
  • In this study, a superconducting fault current limiter (SFCL) having two magnetic paths was proposed, and its current limiting characteristics were analyzed. For the SFCL to effectively perform the current limiting operation, it must be designed considering the magnetic saturation of the E-I core. Further, the influence of the magnetic flux on its peak current limiting characteristics was investigated. In addition, the magnetic flux curves of the SFCL obtained from the fault current limiting experiments were analyzed, and the subtractive polarity winding case was observed to not only further reduce the saturation potential of the core but also perform the peak current limiting functions well when compared with the additive polarity winding case.

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.

The Impact of Nanomaterials in Immune System

  • Jang, Jiyoung;Lim, Dae-Hyoun;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.85-91
    • /
    • 2010
  • As a nanotechnology has been actively applied to the overall areas of scientific fields, it is necessary to understand the characteristic features, physical behaviors and the potential effects of exposure to nanomaterials and their toxicity. In this article we review the immunological influences induced by several nanomaterials and emphasize establishment of the animal models to estimate the impact of these nanomaterials on development of immunological diseases.

Experimental and analytical study on prestressed concrete hollow slabs with asymmetric boundary conditions

  • Ma, Haiying;Lai, Minghui;Xia, Ye
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • Prestressed prefabricated hollow core concrete slabs with spans of 5 m and 10 m are commonly used since last century and still in service due to the advantage of construction convenience and durability. However, the end slabs are regularly subjected to cracks at the top and fail with brittleness due to the asymmetric boundary conditions. To better maintain such widely used type of hollow core slabs, the effect of asymmetric constraint in the end slabs are systematically studied through detailed nonlinear finite element analyses and experimental data. Experimental tests of slabs with four prestressed tendons and seven prestressed tendons with different boundary conditions were conducted. Results observe three failure modes of the slabs: the bending failure mode, shear and torsion failure mode, and transverse failure mode. Detailed nonlinear finite element models are developed to well match the failure modes and to reveal potential damage scenarios with asymmetric boundary conditions. Recommendations regarding ultimate capacity of the slabs with asymmetric boundary conditions are made to ensure a safe and rational design of prestressed concrete hollow slabs for short span bridges.

Chinese Franchise Supermarkets : Future Development and Core Competence-Raising Measures

  • Li, Dong-xin;Kang, Tae-won;Lee, Yong-Ki
    • The Korean Journal of Franchise Management
    • /
    • v.2 no.1
    • /
    • pp.61-73
    • /
    • 2011
  • Supermarket Franchising, as a relatively new mode of retail business, is often regarded as one of the two hallmarks of the "Modern Logistics Revolution". After more than ten years of development, franchise supermarkets have been a rising force in retail business in China. As a product of a highly-developed commercial economy, franchise supermarkets mainly deals in foodstuffs and other daily necessities, featuring low cost, high turnover rate, low prices and diversified inventory. Propelled by the conveniences that come with open shelves and self-service shopping, franchise supermarkets have been growing very rapidly and the rise of many franchise supermarket brands bears testimony to its growth potential and profitability. Meanwhile, in the backdrop of this boom, some franchise supermarkets are going bankrupt. This paper analyzes the current status of franchise supermarkets and some factors bearing on their core competencies, so as to close the competitiveness gap with international retail giants.

Exploration of an Optimal Two-Dimensional Multi-Core System for Singular Value Decomposition (특이치 분해를 위한 최적의 2차원 멀티코어 시스템 탐색)

  • Park, Yong-Hun;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.21-31
    • /
    • 2014
  • Singular value decomposition (SVD) has been widely used to identify unique features from a data set in various fields. However, a complex matrix calculation of SVD requires tremendous computation time. This paper improves the performance of a representative one-sided block Jacoby algorithm using a two-dimensional (2D) multi-core system. In addition, this paper explores an optimal multi-core system by varying the number of processing elements in the 2D multi-core system with the same 400MHz clock frequency and TSMC 28nm technology for each matrix-based one-sided block Jacoby algorithm ($128{\times}128$, $64{\times}64$, $32{\times}32$, $16{\times}16$). Moreover, this paper demonstrates the potential of the 2D multi-core system for the one-sided block Jacoby algorithm by comparing the performance of the multi-core system with a commercial high-performance graphics processing unit (GPU).

A Real-Time Scheduling Technique on Multi-Core Systems for Multimedia Multi-Streaming (다중 멀티미디어 스트리밍을 위한 멀티코어 시스템 기반의 실시간 스케줄링 기법)

  • Park, Sang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1478-1490
    • /
    • 2011
  • Recently, multi-core processors have been drawing significant interest from the embedded systems research and industry communities due mainly to their potential for achieving high performance and fault-tolerance at low cost in such products as automobiles and cell phones. To process multimedia data, a scheduling algorithm is required to meet timing constraints of periodic tasks in the system. Though Pfair scheduling algorithm can meet all the timing constraints while achieving 100% utilization on multi-core based system theoretically, however, the algorithm incurs high scheduling overheads including frequent core migrations and system-wide synchronizations. To mitigate the problems, we propose a real-time scheduling algorithm for multi-core based system so that system-wide scheduling is performed only when it is absolutely necessary. Otherwise the proposed algorithm performs scheduling within each core independently. The experimental results by extensive simulations show that the proposed algorithm dramatically reduces the scheduling overheads up to as negligible one when the utilization is under 80%.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Review paper: Application of the Pulsed Eddy Current Technique to Inspect Pipelines of Nuclear Plants

  • Park, D.G.;Angani, C.S.;Kishore, M.B.;Vertesy, G.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.342-347
    • /
    • 2013
  • Local wall thinning in pipelines affects the structural integrity of industries, such as nuclear power plants (NPPs). In the present study, a development of pulsed eddy current (PEC) technology that detects the wall thinning of pipelines covered with insulation is reviewed. The methods and experimental results, which have two kinds of probe with a single and double core, were compared. For this purpose, the single and double core probes having one and two excitation coils have been devised, and the differential probe with two Hall sensors has been fabricated to measure the wall thinning in insulated pipelines. The test sample is a stainless steel having different thickness, laminated by plastic insulation to simulate the pipelines in NPPs. The excitation coils in the probe is driven by a rectangular current pulse, the difference of two Hall sensors has been measured as a resultant PEC signal. The peak value of the detected signal is used to describe the wall thinning. The double core probe has better performance to detect the wall thinning covered with insulation; the single core probe can detect the wall thinning up to an insulation thickness of 18 mm, whereas the double probe can detect up to 25 mm. The results show that the double core PEC probe has the potential to detect the wall thinning in an insulated pipeline of the NPPs.