DOI QR코드

DOI QR Code

Review paper: Application of the Pulsed Eddy Current Technique to Inspect Pipelines of Nuclear Plants

  • Park, D.G. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Angani, C.S. (Nondestructive Evaluation Division, Indira Gandhi Center for Atomic Research (IGCAR)) ;
  • Kishore, M.B. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Vertesy, G. (Research Center for Natural Sciences, Institute of Technical Physics and Materials Science) ;
  • Lee, D.H. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • Received : 2012.05.31
  • Accepted : 2012.10.09
  • Published : 2013.09.30

Abstract

Local wall thinning in pipelines affects the structural integrity of industries, such as nuclear power plants (NPPs). In the present study, a development of pulsed eddy current (PEC) technology that detects the wall thinning of pipelines covered with insulation is reviewed. The methods and experimental results, which have two kinds of probe with a single and double core, were compared. For this purpose, the single and double core probes having one and two excitation coils have been devised, and the differential probe with two Hall sensors has been fabricated to measure the wall thinning in insulated pipelines. The test sample is a stainless steel having different thickness, laminated by plastic insulation to simulate the pipelines in NPPs. The excitation coils in the probe is driven by a rectangular current pulse, the difference of two Hall sensors has been measured as a resultant PEC signal. The peak value of the detected signal is used to describe the wall thinning. The double core probe has better performance to detect the wall thinning covered with insulation; the single core probe can detect the wall thinning up to an insulation thickness of 18 mm, whereas the double probe can detect up to 25 mm. The results show that the double core PEC probe has the potential to detect the wall thinning in an insulated pipeline of the NPPs.

Keywords

References

  1. S. Winnik, European Federation of Corrosion Publications No. 55, Woodhead Publishing Limited, Cambridge England (2008).
  2. W. H. Ahmed, Annals of Nucl. Energy 37, 598 (2010). https://doi.org/10.1016/j.anucene.2009.12.020
  3. J. C. Moulder, E. Uzal, and J. H. Rose, Rev. Sci. Instrum. 63, 3455 (1992). https://doi.org/10.1063/1.1143749
  4. G. Y. Tian and A. Sophian, Insight 47, 277 (2005). https://doi.org/10.1784/insi.47.5.277.65048
  5. C. V. Dodd and W. E. Deeds, J. Appl. Phys 39, 2829 (1968). https://doi.org/10.1063/1.1656680
  6. I. Z. Abidin, C. Mandache, and G. Y. Tian, NDT&E International 42, 599 (2009). https://doi.org/10.1016/j.ndteint.2009.04.001
  7. N. Nair, V. Melapudi, J. Hector, X. Liu, Y. Deng, Z. Zang, L. Udpa, J. M. Thomas, and S. Udpa, IEEE Trans. Magn. 42, 3312 (2006). https://doi.org/10.1109/TMAG.2006.879820
  8. R. Griberg, L. Udpa, A. Savin, R. Steigmann, V. Palihovic, and S. S. Udpa, NDT&E Int. 39, 264 (2006). https://doi.org/10.1016/j.ndteint.2005.08.004
  9. A. Sophian, G. Y. Tian, D. Taylor, an J. Rudlin, NDT & E int. 36, 37 (2003). https://doi.org/10.1016/S0963-8695(02)00069-5
  10. Zhang Gang and Zhao Liang, Transducer and Microsystems Technologies 25, 35 (2006).
  11. C. J. Renken, Materials Evaluation 59, 356 (2001).
  12. J. Blitz, Chapman & Hall, London, 1997.
  13. M. A. Robers and R. S. Scottini, Proc. of 8th ECNDT conf, ndt.net, 7, Barcelona, June (2002).
  14. R. A. Smith and G. R. Hugo, Insight 43, 14 (2001).
  15. J. Bowler, Rev. Trog. Prog. QNDE 9, 287 (1990).
  16. J. Bowler and M. Johnson, IEEE Trans. Magn. 33, 2258 (2007).
  17. V. O. de Haan and P. A. de Jong, IEEE, Trans. Magn. 40, 371 (2004). https://doi.org/10.1109/TMAG.2004.824100
  18. M. J. Cohn and J. W. Norton, Proceeding of PVP 2008, ASME Pressure Vessels and Piping Division Conference.
  19. M. A. Roberts and R. Scottomo, Pulsed eddy current in corrosion detection, www.ndt.net/article.Ecndt 02/251/ 251.htm
  20. T. W. Krause, C. Mandache, and J. H. V Lefebvre, AIP Conf. Proc 27, 368 (2008).
  21. W. Youhua, W. Junhua, L. Jiangui, and L. Haohua, IEEE Region 8 Int. Conf. on Computational Technologies in Electrical and Electronics Engineering, SIBRICON, 238 (2008).
  22. ANASOFT corporation, Maxwell EM V13, www.ansoft.com.
  23. D. G. Park, C. S. Angani, G. D. Kim, and C. G. Kim IEEE Trans. Magn. 45, 3893 (2009). https://doi.org/10.1109/TMAG.2009.2024219
  24. T. W. Krause, C. Mandache, and J. H. V. Lefebvr, Rev. of Quantitative Nondest. Eval. 27, 368 (2008).
  25. C. S. Angani, D. G. Park, C. G. Kim, P. Kollu, and Y. M. Cheong, J. Magnetics 15, 204 (2010). https://doi.org/10.4283/JMAG.2010.15.4.204
  26. W. Youhua, W. Junhua, L. Jiangui, and L. Haohua, Proc. of Int. Conf. CTEEE, Novosibirsk, Russia, the IEEE Region 8 Sibircon, 238 (2008).

Cited by

  1. Wall Thinning Characterization of Composite Reinforced Steel Tube Using Frequency-Domain PEC Technique and Neural Networks vol.37, pp.3, 2018, https://doi.org/10.1007/s10921-018-0477-1