• Title/Summary/Keyword: potential, thermal loads

Search Result 26, Processing Time 0.025 seconds

Electro-elastic analysis of functionally graded piezoelectric variable thickness rotating disk under thermal environment

  • Arefi, Mohammad;Moghaddam, Sina Kiani
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • In this study we derive the governing equations of a functionally graded piezoelectric disk, subjected to thermo-electro-mechanical loads. First order shear deformation theory is used for description of displacement field. Principles of minimum potential energy is used to derive governing equations in terms of components of the displacement field and the electric potential. The governing equations are derived for a disk with variable thickness. The numerical results are presented in terms of important parameters of the problem such as profile of variable thickness, in-homogeneous index and other related parameters.

Analysis of Fuel Savings in Marine Organic Rankine Cycle Systems through Waste Heat Recovery (선박 폐열회수를 통한 ORC 시스템의 연료절감 효과분석)

  • Dae-Jung Hwang;Jae-Hoon Jee;Cheol Oh
    • New & Renewable Energy
    • /
    • v.20 no.3
    • /
    • pp.12-19
    • /
    • 2024
  • This study uses exergy analysis to evaluate the fuel-saving potential of a waste heat recovery unit (WHRU) integrated with an Organic Rankine Cycle (ORC) system for marine applications. Data from the training ship HANBADA of the Korea Maritime University and the general cargo ship BBC CAMPANA, including their operational routes and main engine loads, were used in this study. Simulations indicated that the WHRU system could save approximately 27.5 metric tons of fuel per voyage, equivalent to approximately 2.1% of the total fuel consumption. The WHRU system demonstrated a higher efficiency during long-distance voyages, significantly enhancing fuel savings. In addition, higher engine loads increased the exhaust gas thermal energy, thereby substantially improving the WHRU output. This study emphasizes the importance of evaluating the applicability of the ORC system for marine vessels by closely examining their operational patterns, navigation duration, and main engine load variability.

Collapse Initiation and Mechanisms for a Generic Multi-storey Steel Frame Subjected to Uniform and Travelling Fires

  • Rackauskaite, Egle;Kotsovinos, Panagiotis;Lange, David;Rein, Guillermo
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.265-283
    • /
    • 2021
  • To ensure that fire induced collapse of a building is prevented it is important to understand the sequence of events that can lead to this event. In this paper, the initiation of collapse mechanisms of generic a multi-storey steel frame subjected to vertical and horizontal travelling fires are analysed computationally by tracking the formation of plastic hinges in the frame and generation of fire induced loads. Both uniform and travelling fires are considered. In total 58 different cases are analysed using finite element software LS-DYNA. For the frame examined with a simple and generic structural arrangement and higher applied fire protection to the columns, the results indicate that collapse mechanisms for singe floor and multiple floor fires can be each split into two main groups. For single floor fires (taking place in the upper floors of the frame (Group S1)), collapse is initiated by the pull-in of external columns when heated beams in end bays go into catenary action. For single floor fires occurring on the lower floors(Group S2), failure is initiated (i.e. ultimate strain of the material is exceeded) after the local beam collapse. Failure in both groups for single floor fires is governed by the generation of high loads due to restrained thermal expansion and the loss of material strength. For multiple floor fires with a low number of fire floors (1 to 3) - Group M1, failure is dominated by the loss of material strength and collapse is mainly initiated by the pull-in of external columns. For the cases with a larger number of fire floors (5 to 10) - Group M2, failure is dominated by thermal expansion and collapse is mainly initiated by swaying of the frame to the side of fire origin. The results show that for the investigated frame initiation of collapse mechanisms are affected by the fire type, the number of fire floors, and the location of the fire floor. The findings of this study could be of use to designers of buildings when developing fire protection strategies for steel framed buildings where the potential for a multifloor fire exists.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

A Study on Temperature Field and Contact Pressure in Ventilated Disc-Pad Brake by 3D Thermo-mechanical Coupling Model (3차원 열-기계 커플링 모델에 의한 벤틸레이티드 디스크-패드 브레이크의 온도 분포와 접촉 압력에 관한 연구)

  • Hwang, Pyung;Seo, Hee-Chang;Wu, Xuan
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.421-426
    • /
    • 2009
  • The brake system is important part of automobile safety system. The disc brake system is divided two parts: the rotating axisymmetrical disc and the stationary pads. During braking, the kinetic energy and potential energy of moving vehicle were converted into the thermal energy through frictional heat between the brake disc and the pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperature during the braking process. The object of present work is to determine temperature and thermal stress, to compare to simulation results and experimental results in the disc by partial 3D model of ventilated disc brake with appropriate boundary conditions. In the simulation process, the mechanical loads were applied to the thermo-mechanical coupling analysis in order to simulate the process of heat produced by friction.

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.

A Study on the Hot Extrusion Dies with $TiB_2$ Insert ($TiB_2$ 인서트를 체결한 열간압출 금형에 관한 연구)

  • Kwon H. H.;Lee J. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.106-109
    • /
    • 2001
  • The use of ceramic inserts in hot extrusion dies offers significant technical and economic advantages over other forms of manufacture. These potential benefits can however only be realized by optimal design of the tools so that the ceramic inserts are not subjected to stresses that lead to their premature failure. In this paper, process simulation and stress analysis are thus combined during the design, and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. The results are compared with the experimental ones for verification.

  • PDF

Investigation on electromagnetothermoelastic interaction of functionally graded piezoelectric hollow spheres

  • Dai, Hong-Liang;Rao, Yan-Ni
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.49-64
    • /
    • 2011
  • An analytical method is presented to investigate electromagnetothermoelastic behaviors of a hollow sphere composed of functionally graded piezoelectric material (FGPM), placed in a uniform magnetic field, subjected to electric, thermal and mechanical loads. For the case that material properties obey an identical power law in the radial direction of the FGPM hollow sphere, exact solutions for electric displacement, stresses, electric potential and perturbation of magnetic field vector in the FGPM hollow sphere are determined by using the infinitesimal theory of electromagnetothermoelasticity. Some useful discussion and numerical examples are presented to show the significant influence of material inhomogeneity. The aim of this research is to understand the effect of composition on electromagnetothermoelastic stresses and to design optimum FGPM hollow spheres.

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.

Forging Die Design using Ceramic Insert (세라믹 인서트를 이용한 단조 금형설계)

  • 권혁홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2000
  • The use of ceramic inserts in steel forging tools offers significant technical and economic advantages over other materi-als of manufacture. These potential benefits can however only be realised by optimal design of the tools so that the ceramic insert are not subjected to stresses that led to their premature failure. In this paper the data on loading of the tools is determined from a commercial forging simulation package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite-element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic detections generated in shrink fitting the die inserts and that caused by the stresses generated in the forging process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. Simulation results have been validated as a result of experimental investigation. Laboratory tests on ceramic insert dies have verified the superior performance of the Zirconia and Silicon Nitride ceramic insert in order to prolong maintenance life.

  • PDF