• Title/Summary/Keyword: posture modeling

Search Result 74, Processing Time 0.028 seconds

A Study on Geometric Modeling and Generation of 4-axis NC Data for Single Setup of Small Marine Propeller (선박용 소형 프로펠러의 곡면 모델링 및 단일 셋업에 의한 4축 NC가공 데이터 생성에 관한 연구)

  • 이재현;이철수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.254-261
    • /
    • 2002
  • Small marine propeller is generally machined by 5-axis machining. This paper suggests a method to create geometric model from point array data and 4-axis machining NC data for propeller. With conventional method, the setting posture should be changed, because propeller has front and back surface of wing. The change of setting posture has a bad influence on precision of propeller. So this paper pro-poses a method to machine propeller by single setup for 4-axis machining. The cutter moves to parallel direction of the XY plane. To determine the cutter orientation efficiently, the' tilting guiding line' is proposed. A proposed algorithm is written in C language and successfully applied to the 5-axis milling machine of industrial field.

A Design and Implementation of a Worker Musculoskeletal Assessment Platform Based on Machine Learning

  • Sejong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.129-135
    • /
    • 2024
  • In this paper, we design and implement a worker musculoskeletal assessment platform. The three core components of this platform are the Mobile App, the Modeling Server, and the Web Platform. The Mobile App is an Android application developed in Kotlin, targeting Android platform 12 (S) and Android API Level 31 devices. The app utilizes the camera to capture various worker motion data and transmits it to the Modeling Server. The Modeling Server is implemented using Node.js. This server converts the worker's motion data-such as points, skeleton, and x, y, z coordinate data, measured by the mobile app-into multidimensional arrays. It then applies machine learning frameworks like TensorFlow and Keras to predict the worker's posture. The worker posture learning model is built using Teachable Machine. The Web Platform is developed using React and visualizes the worker's movements as 3D animations along a timeline. The machine learning-based worker musculoskeletal assessment platform developed in this paper aims to contribute to minimizing musculoskeletal disorders in workers at industrial sites.

Predictive Modeling Design for Fall Risk of an Inpatient based on Bed Posture (침대 자세 기반 입원 환자의 낙상 위험 예측 모델 설계)

  • Kim, Seung-Hee;Lee, Seung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.51-62
    • /
    • 2022
  • This study suggests a design of predictive modeling for a hospital fall risk based on inpatients' posture. Inpatient's profile, medical history, and body measurement data along with basic information about a bed they use, were used to predict a fall risk and suggest an algorithm to determine the level of risk. Fall risk prediction is largely divided into two parts: a real-time fall risk evaluation and a qualitative fall risk exposure assessment, which is mostly based on the inpatient's profile. The former is carried out by recognizing an inpatient's posture in bed and extracting rule-based information to measure fall risk while the latter is conducted by medical staff who examines an inpatient's health status related to hospital fall risk and assesses the level of risk exposure. The inpatient fall risk is determined using a sigmoid function with recognized inpatient posture information, body measurement data and qualitative risk assessment results combined. The procedure and prediction model suggested in this study is expected to significantly contribute to tailored services for inpatients and help ensure hospital fall prevention and inpatient safety.

A Study on Impact analysis of breaking the pine board (태권도 격파시 인체 충격력에 대한 연구)

  • Lee J.W.;Lee Y.S.;Choei Y.J.;Lee S.H.;Lee H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1948-1953
    • /
    • 2005
  • The Teakwondo is composed of the breaking, competition and poomsea. In the hand breaking, the breaking impact of human is affected by the breaking posture. In this paper, impact analysis of the human model for breaking posture is carried out. The LifeMOD is used in breaking modeling and simulation. The simulation model createsthe human model to hit and to grasp a pine board. For the breaking, the poomsea motion of the hand joint inputs the splines pass condition. As the results, the reaction of human joint is presented

  • PDF

Improvement of Manual Work using Ergonomic Simulation Method (시뮬레이션을 이용한 작업 자세 개선 사례)

  • Cha T.I.;Shin J.G.;Kim N.D.;Jeong Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.603-604
    • /
    • 2006
  • The worker who is responsible for Airless Pump maintenance have a high possibility to suffer from WMSDs, because a height of Airless Pump workbench is too low. In this paper, I'm going to introduce a research about 1) analysis of working environment through a interview with an actual field worker, 2) Ergonomic simulation modeling of an Ariless Pump worker to suggest a advanced working environment and a working instructions. I have used a DELMIA S/W as a tool for ergonomic simulation and performed a posture & activity to analyze a RULA methodology. Applying the Digital Human Simulation to analyze working posture would be helpful to preventing WMSDs.

  • PDF

Construction Ergonomic Intervention to Reduce Musculoskeletal Disorders in Aluminum Formworkers

  • Kim, Dae Young;Yi, Hak;Lee, Sang Ryong;Kim, Bubryur;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.465-472
    • /
    • 2022
  • Manual material handling is the one of the leading causes for musculoskeletal disorders (MSDs) and lower back discomfort. According to a study, construction formworkers suffer greater rates of muscular injuries and related illness due to manual activities. However, there is still a paucity of information on MSD, preventive posture issues, and corresponding solutions for construction aluminum formworkers. As a result, MSD and disregard of worker health and safety continue to exist at construction sites. Although preventive measures and strategies have been studied in previous research, we believe it is imperative to shed light on this problem through this study. This study aims to 1) implement a simple and cost-effective elevated bench to reduce MSDs, and 2) determine the rapid upper limbs assessment (RULA) and Ovako working posture analyzing system (OWAS) action catagory of workers in different postures to assess their MSD conditions and obtain an optimal position and posture using the Jack human modeling software and simulation tool. The study findings reveal a considerable reduction in MSD discomfort and which posture is acceptable in post-intervention instances.Thus results provide inexpensive and simple ergonomic interventions with favorable RULA and OWAS ratings that can be applied at construction sites. This study demonstrates workstation ergonomic intervention cases that can aid in understanding the urgency of applying existing research strategies into practice.

  • PDF

A 3D Posture Measuring and Display System for Hemiplegic Patients (편마비 환자를 위한 3차원 보행 자세 측정 및 디스플레이 시스템)

  • Hwang, Yong-Ha;Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.119-127
    • /
    • 2014
  • TIn this paper, Hemiplegic patients have gait characteristics different from normal persons. This paper presents a posture measuring and display system reflecting their characteristics. Patients wear 3 sensor modules on thigh, calf and foot. To enhance measuring precision of each sensor module, 3D accelerometer and 3D gyroscope are combined. Gait posture is displayed in 3D by modeling thigh, calf and foot as connected 3D objects based on data of the sensor modules. For convenience in inspecting unusual gait posture of hemiplegic patients, any view angle of the 3D display can be selected. In addition, the current gait phase of RLA(Rancho Los Amigos) gait cycle is determined and displayed in real-time by utilizing the posture information, The phase sequence and duration of each phase can be used in evaluating gait quality of patients.

3D Modeling of Safety Leg Guards Considering Skin Deformation and shape (피부길이변화를 고려한 3차원 다리보호대 모델링)

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.24 no.4
    • /
    • pp.555-569
    • /
    • 2015
  • During a design process of a protective equipment for sports activities, minimizing movement restrictions is important for enhancing its functions particularly for protection. This study presents a three-dimensional(3D) modeling methodology for designing baseball catcher's leg guards that will allow maximum possible performance, while providing necessary protection. 3D scanning is performed on three positions frequently used by a catcher during the course of a game by putting markings on the subject's legs at 3cm intervals : a standing, a half squat with knees bent to 90 degrees and 120 degrees of knee flexion. Using data obtained from the 3D scan, we analyzed the changes in skin length, radii of curvatures, and cross-sectional shapes, depending on the degree of knee flexion. The results of the analysis were used to decide an on the ideal segmentation of the leg guards by modeling posture. Knee flexions to 90 degrees and to $120^{\circ}$ induced lengthwise extensions than a standing. In particular, the vertical length from the center of the leg increases to a substantially higher degree when compared to those increased from the inner and the outer side of the leg. The degree of extension is varied by positions. Therefore, the leg guards are segmented at points where the rate of increase changed. It resulted in a three-part segmentation of the leg guards at the thigh, the knee, and the shin. Since the 120 degree knee-flexion posture can accommodate other positions as well, the related 3D data are used for modeling Leg Guard (A) with the loft method. At the same time, Leg Guard (B) was modeled with two-part segmentation without separating the knee and the shin as in existing products. A biomechanical analysis of the new design is performed by simulating a 3D dynamic analysis. The analysis revealed that the three-part type (A) leg guards required less energy from the human body than the two-part type (B).

Modeling of Wrist Discomfort with External Loads (손목 자세와 외부 부하에 따른 손목 불편도 모델링)

  • Choi, Kwang-Soo;Park, Jae-Kyu;Jung, Eui-S.;Choe, Jae-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.11-27
    • /
    • 2005
  • The objectives of this study are to analyze representative wrist postures while using hand tools and parts at general assembly processes, to evaluate perceived discomfort on the wrist when external loads are present, and to suggest an evaluation and prediction model of perceived discomfort. Sixteen subjects participated in an experiment to appraise perceived discomfort. Three types of the wrist postures with five levels of non-neutralities were analyzed when five levels of external load were applied to each posture. The ANOVA results showed that the perceived discomfort of wrist postures was significantly affected by both the wrist posture and external load (p$<$0.001). It was also shown that some of the interactions between external loads and the wrist postures(Flexion/$Extension^*$Load, Flexion/$Extension^*$supination/pronation, ulnar/radial $deviation^*$supination/pronation) were significant(p$<$0.001). The result implies that a new posture classification scheme for workload assessment methods may be needed to reflect such effects of external load and wrist posture. A regression model of perceived discomfort was developed with respect to wrist posture and external load from the experimental data. A subsequent experiment revealed that the correlation coefficient between the predicted values of perceived discomfort from the model and the actual values obtained from the experiment was about 0.98. It is expected that the results help to properly estimate the body stress resulting from worker's postures and external loads and can be used as a valuable design guideline to analyze potential hazard of musculoskeletal diseases in industry.

The 3D Character Modeling for Golf Swing Motion Analysis by Economical Verification of Body Information (인체정보 DB의 경제적인 조합을 통한 골프 스윙 동작 분석용 3D 캐릭터 모델링)

  • 곽현민;채균식;박찬종;이상태
    • Science of Emotion and Sensibility
    • /
    • v.6 no.2
    • /
    • pp.59-64
    • /
    • 2003
  • The national standard anthropometry of Korea is conducted every 5∼6 year term after its first research was started in 1979, The fourth research was conducted in 1997. The result of the national standard anthropometry has been reflected in manufactured goods design of allied industries such as clothing, shoes and furniture. In this paper, we measured anthropometry data for every bodily figurative classification after dividing users according to gender, age and bodily figure using the result of the national standard anthropometry. We constructed 3D character through the process of analyzing interrelation of measured anthropomeoy and measuring representative category. In the process for organization , we measured anthropometry which can effectively express sports action of golf, tennis etc. We made it by presenting measurement which is able to form each type of 3D character after the category was decided. Quantitative and objective valuation for posture and action became possible by developing visible information offer and posture action analysis protocol in theoretical approach for analysis of posture and action in sports.

  • PDF