• Title/Summary/Keyword: posture estimation

Search Result 101, Processing Time 0.025 seconds

Accuracy Analysis of 3D Posture Estimation Algorithm Using Humanoid Robot (휴머노이드 로봇을 이용한 3차원 자세 추정 알고리즘 정확도 분석)

  • Baek, Su-Jin;Kim, A-Hyeon;Jeong, Sang-Hyeon;Choi, Young-Lim;Kim, Jong-Wook
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.71-74
    • /
    • 2022
  • 본 논문은 최적화알고리즘을 이용한 관절각 기반 3차원 자세 추정 기법의 정확도를 휴머노이드 로봇을 이용하여 검증하는 방법을 제안한다. 구글의 자세 추정 오픈소스 패키지인 MPP(MediaPipe Pose)로 특정자세를 취한 휴머노이드 로봇의 관절 좌표를 카메라의 픽셀 좌표로 추출한다. 추출한 픽셀 좌표를 전역최적화 방법인 uDEAS(univariate Dynamic Encoding Algorithm for Searches)를 통해 시상면과 관상면에서의 각도를 추정하고 휴머노이드 로봇의 실제 관절 각도와 비교하여 알고리즘의 정확도를 검증하는 방법을 제시한다.

  • PDF

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.

Human Postural Dynamics in Response to the Horizontal Vibration

  • Shin Young-Kyun;Fard Mohammad A.;Inooka Hikaru;Kim Il-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.325-332
    • /
    • 2006
  • The dynamic responses of human standing postural control were investigated when subjects were exposed to long-term horizontal vibration. It was hypothesized that the motion of standing posture complexity mainly occurs in the mid-sagittal plane. The motor-driven support platform was designed as a source of vibration. The AC Servo-controlled motors produced anterior/posterior (AP) motion. The platform acceleration and the trunk angular velocity were used as the input and the output of the system, respectively. A method was proposed to identify the complexity of the standing posture dynamics. That is, during AP platform motion, the subject's knee, hip and neck were tightly constrained by fixing assembly, so the lower extremity, trunk and head of the subject's body were individually immovable. Through this method, it was assumed that the ankle joint rotation mainly contributed to maintaining their body balance. Four subjects took part in this study. During the experiment, the random vibration was generated at a magnitude of $0.44m/s^2$, and the duration of each trial was 40 seconds. Measured data were estimated by the coherence function and the frequency response function for analyzing the dynamic behavior of standing control over a frequency range from 0.2 to 3 Hz. Significant coherence values were found above 0.5 Hz. The estimation of frequency response function revealed the dominant resonance frequencies between 0.60 Hz and 0.68 Hz. On the basis of our results illustrated here, the linear model of standing postural control was further concluded.

Human Legs Motion Estimation by using a Single Camera and a Planar Mirror (단일 카메라와 평면거울을 이용한 하지 운동 자세 추정)

  • Lee, Seok-Jun;Lee, Sung-Soo;Kang, Sun-Ho;Jung, Soon-Ki
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1131-1135
    • /
    • 2010
  • This paper presents a method to capture the posture of the human lower-limbs on the 3D space by using a single camera and a planar mirror. The system estimates the pose of the camera facing the mirror by using four coplanar IR markers attached on the planar mirror. After that, the training space is set up based on the relationship between the mirror and the camera. When a patient steps on the weight board, the system obtains relative position between patients' feet. The markers are attached on the sides of both legs, so that some markers are invisible from the camera due to the self-occlusion. The reflections of the markers on the mirror can partially resolve the above problem with a single camera system. The 3D positions of the markers are estimated by using the geometric information of the camera on the training space. Finally the system estimates and visualizes the posture and motion of the both legs based on the 3D marker positions.

Implementation of Personalized Rehabilitation Exercise Mobile App based on Edge Computing

  • Park, Myeong-Chul;Hur, Hwa-La
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.93-100
    • /
    • 2022
  • In this paper, we propose a mobile app for personalized rehabilitation exercise coaching and management service using an edge computing-based personalized exercise information collection system. The existing management method that relies on user input information has difficulty in examining the actual possibility of rehabilitation. In this paper, we implement an application that collects movement information along with body joint information through image information analysis based on edge computing at a remote location, measures the time and accuracy of the movement, and provides rehabilitation progress through correct posture information. In addition, in connection with the measurement equipment of the rehabilitation center, the health status can be managed, and the accuracy of exercise information and trend analysis information is provided. The results of this study will enable management and coaching according to self-rehabilitation exercises in a contactless environment.

A Taekwondo Poomsae Movement Classification Model Learned Under Various Conditions

  • Ju-Yeon Kim;Kyu-Cheol Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.9-16
    • /
    • 2023
  • Technological advancement is being advanced in sports such as electronic protection of taekwondo competition and VAR of soccer. However, a person judges and guides the posture by looking at the posture, so sometimes a judgment dispute occurs at the site of the competition in Taekwondo Poomsae. This study proposes an artificial intelligence model that can more accurately judge and evaluate Taekwondo movements using artificial intelligence. In this study, after pre-processing the photographed and collected data, it is separated into train, test, and validation sets. The separated data is trained by applying each model and conditions, and then compared to present the best-performing model. The models under each condition compared the values of loss, accuracy, learning time, and top-n error, and as a result, the performance of the model trained under the conditions using ResNet50 and Adam was found to be the best. It is expected that the model presented in this study can be utilized in various fields such as education sites and competitions.

Study on The Estimation Method of the Joint for the Operation of the Upper Limb Rehabilitation Equipment for Hemiplegic Patients II (편마비 환자의 상지 재활 기기 운용을 위한 관절 각 추정 기법에 관한 연구 II)

  • Song, K.S.;Eom, S.H.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.4
    • /
    • pp.313-318
    • /
    • 2014
  • In this paper, we propose a method for correcting the measurement axis twist that occurs in the process of wearing and each estimation method of joint in which the inertial measurement unit based in health arm by the method of operation upper limb rehabilitation equipment of hemiplegic patients. In order to verify the proposed method, it is fitted with a inertial measurement unit of the upper arm and forearm of the experimenter left arm, verified by comparing actual joint angle is detected by photographing the arbitrary posture, the angle that the estimated joint. Then, it was verified by comparing the applied front / rear techniques for correcting the measurement axis twist. A result of the experiment, before applying the measurement axis twist correction, joint, after but each match rate showed a weak concordance rate in 89.16% and were corrected, measurement axis twist, each concordance rate of joint agreement of 93.28% I understand that it has been 4.12% improvement in the rate.

  • PDF

Manufacturing of a Korean Hand Phantom with Human Electrical Properties at 835 MHz and 1,800 MHz Bands (835 MHz 및 1,800 MHz 대역에서 인체의 전기적 특성을 가지는 한국인 손 모양의 팬텀 제작)

  • Choi, Donggeun;Gimm, Yoonmyoung;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.534-540
    • /
    • 2013
  • Interest of the hand effect on the electromagnetic wave are internationally increasing with the increase of the use of the mobile phone. IEC TC106(International Electrotechnical Commission, Technical Committee 106) promotes international research exchange program in order to reflect the effect of human hands in the standard assessment method of human exposure dosimetry by the electromagnetic wave of mobile phones. Since current commercialized hand phantom is manufactured by taking into account the average size of westerners and provides only one grip posture, it imposes many restrictions on the accurate SAR measurement. Therefore, the development of proper hand phantom accounting for domestic situation and various grip posture capability is essential in order to analyze the accurate effect of human hand on the exposure estimation. In this paper, a jelly hand phantom suitable for Korean was manufactured with various grip posture capability at 835 MHz and 1,800 MHz bands. Although the tolerances of permittivity and conductivity of the manufactured hand phantom are with ${\pm}10%$ each, it was much less than CTIA(Cellular Telecommunication Industry Association) tolerance of ${\pm}20%$ at both bands. Its 3D CAD(3 Dimensional Computer Aided Design) file which was developed can be utilized for the simulation of human hand effect on SAR measurement of mobile phones. The findings in this study can be utilized for the analysis of human hand effect on SAR measurement of a mobile phone.

Investigation of image preprocessing and face covering influences on motion recognition by a 2D human pose estimation algorithm (모션 인식을 위한 2D 자세 추정 알고리듬의 이미지 전처리 및 얼굴 가림에 대한 영향도 분석)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.285-291
    • /
    • 2020
  • In manufacturing, humans are being replaced with robots, but expert skills remain difficult to convert to data, making them difficult to apply to industrial robots. One method is by visual motion recognition, but physical features may be judged differently depending on the image data. This study aimed to improve the accuracy of vision methods for estimating the posture of humans. Three OpenPose vision models were applied: MPII, COCO, and COCO+foot. To identify the effects of face-covering accessories and image preprocessing on the Convolutional Neural Network (CNN) structure, the presence/non-presence of accessories, image size, and filtering were set as the parameters affecting the identification of a human's posture. For each parameter, image data were applied to the three models, and the errors between the actual and predicted values, as well as the percentage correct keypoints (PCK), were calculated. The COCO+foot model showed the lowest sensitivity to all three parameters. A <50% (from 3024×4032 to 1512×2016 pixels) reduction in image size was considered acceptable. Emboss filtering, in combination with MPII, provided the best results (reduced error of <60 pixels).

A Study on the Improvement of Construction Site Worker Detection Performance Using YOLOv5 and OpenPose (YOLOv5 및 OpenPose를 이용한 건설현장 근로자 탐지성능 향상에 대한 연구)

  • Yoon, Younggeun;Oh, Taekeun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.735-740
    • /
    • 2022
  • The construction is the industry with the highest fatalities, and the fatalities has not decreased despite various institutional improvements. Accordingly, real-time safety management by applying artificial intelligence (AI) to CCTV images is emerging. Although some research on worker detection by applying AI to images of construction sites is being conducted, there are limitations in performance expression due to problems such as complex background due to the nature of the construction industry. In this study, the YOLO model and the OpenPose model were fused to improve the performance of worker detection and posture estimation to improve the detection performance of workers in various complex conditions. This is expected to be highly useful in terms of unsafe behavior and health management of workers in the future.