• Title/Summary/Keyword: post-transition metal dichalcogenide

Search Result 1, Processing Time 0.013 seconds

Study on the Change of Electrical Properties of two-dimensional SnSe2 Material via Cl doping under a High Temperature Condition (이차원 SnSe2 전자소재의 Cl 도핑에 따른 고온 전도 물성 고찰)

  • Moon, Seung Pil;Kim, Sung Wng;Sohn, Hiesang;Kim, Tae Wan;Lee, Kyu Hyoung;Lee, Kimoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.49-53
    • /
    • 2017
  • We study on the change of electrical properties of two-dimensional (2D) $SnSe_2$ materials with respect to Cl doping as $SnSe_{1.994}Cl_{0.006}$ under a high temperature condition. (300~450 K) By the simple solid-state reaction method, non-and Cl-doped 2D $SnSe_2$ materials are successfully synthesized with negligible impurities as confirmed by X-ray diffraction. From the temperature dependence of resistivity, it is observed that the conduction mechanism is changed from hopping to degenerate conduction with Cl doping. By Hall effect measurement, an increase on electron carrier concentration from ${\sim}7{\times}10^{16}$ to ${\sim}3{\times}10^{18}cm^{-3}$ with Cl doping verifies that Cl is an effective electron donor which results in the encouraged carrier concentration. Detailed analysis for temperature dependent Hall mobility reveals that the electrical transports in high temperature regime are governed by the grain boundary-controlled mechanism for non-doped $SnSe_2$, which is effectively suppressed by Cl-doping as entering metallic transport regime.