• 제목/요약/키워드: post-heating

검색결과 151건 처리시간 0.01초

플라즈마/후가열 장치를 이용한 NOx 저감에 에틴($C_2H_4$)이 미치는 영향에 관한 연구 (Effect of ethene($C_2H_4$) on DeNOx using Plasma/Post-Heating System)

  • 정상호;이형상;박광서;전배혁;전광민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.157-162
    • /
    • 2002
  • The characteristics of DeNOx conversion process by plasma/post-heating system with the simulated gas containing ethene is investigated experimentally. Without plasma treatment, $NO-NO_2$ conversion doesn't occur by $400^{\circ}C$ in a mixture of $N_2/O_2$ with a trace gas of ethene. But $NO-NO_2$ conversion occurs as temperature increases above $400^{\circ}C$. The NO can, however, be converted to $NO_2$ at lower temperatures by treating the gas mixture with non-thermal plasma. The $NO-NO_2$ conversion enhances further by passing the plasma treated gas through the post-heating furnace. Results show that 20%${\sim}50%$ more conversion of NO to $NO_2$ is observed when the temperatures of the post-heating furnace are maintained at $300^{\circ}C$ or $400^{\circ}C$. The additional $NO-NO_2$ conversion by post-heating is due to the reaction of ethene with the byproducts or radicals generated from the plasma reaction.

  • PDF

Effects of Annealing Temperature on Properties of Al-Doped ZnO Thin Films prepared by Sol-Gel Dip-Coating

  • Jun, Min-Chul;Koh, Jung-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.163-167
    • /
    • 2013
  • Aluminum doped zinc oxide (AZO) thin films have been prepared on the glass substrates (Corning 1737) by sol-gel dip-coating method employing zinc acetate and aluminum chloride hexahydrate for the transparent conducting oxide (TCO) applications. 1 at% Al was doped to the ZnO thin films. The effects of post-heating temperature on the crystallization, optical and electrical properties of the AZO films have been investigated. Experimental results showed that post-heating temperature affected the microstructure, electrical resistance, and optical transmittance of the AZO films. From the X-ray diffraction analysis, all films have hexagonal wurtzite crystal structure. Optical transmittance spectra of the AZO films exhibited transmittance higher than about 80% within the visible wavelength region and the optical direct band gap ($E_g$) of these films was increased with increasing post-heating temperature. A minimum resistivity of $2.5{\times}10^{-3}{\Omega}cm$ was observed at $650^{\circ}C$.

흡수성 Biofilter System에서 동절기 가온이 처리 특성과 성능에 미치는 영향 (Effects of Winter Heating on the Treatment Characteristics and Performance of Absorbent Biofilter System)

  • 권순국;전기설;김성배
    • 한국농공학회논문집
    • /
    • 제47권6호
    • /
    • pp.73-82
    • /
    • 2005
  • This study was performed to evaluate the need for heating wastewater to enhance treatment efficiency of organic matter (BOD, SS) during cold winter in newly developed Absorbent Biofilter System (ABS) which was established in the Suwon Campus of the Seoul National University. Treatments consisted of non-heating (2000 year) and heating(2001, 2002 year), and sampled data were analyzed during cold winter period as well as post winter period to investigate the influence of heating after winter season. Even the average air temperature showed only $0.4^{\circ}C$ difference between two experimental years, the difference in the average effluent temperature during cold winter period between heating and non-heating experiment was approximately $11^{\circ}C$. The average effluent concentration of organic matter in non-heating treatment exceeded the Korean standards for water quality of discharged effluent in riparian area (BOD and SS 10 mg/L); however, the standards were met in case of heating treatment during both winter and post winter period. Therefore, the need fur heating wastewater during cold winter season in ABS was justified. On the other hand, there was no improvement of treatment efficiency in T-N and T-p, but we observed the more activated nitrification as increasing the wastewater temperature. Because the average underground temperature was $5^{\circ}C$ higher than the average air temperature during cold winter period, we recommend that the ABS can be established in the underground rather than on-ground for saving the heating cost.

SHS 공정에 의해 제조된 MoxW1-xSi2 발열체의 열화메커니즘 (Degradation Mechanism of MoxW1-xSi2 Heating Elements Fabricated by SHS Process)

  • 이동원;이상헌;김용남;이성철;구상모;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.631-636
    • /
    • 2017
  • The degradation mechanism of $Mo_xW_{1-x}Si_2$ ultrahigh-temperature heating elements fabricated by self-propagating high-temperature synthesiswas investigated. The $Mo_xW_{1-x}Si_2$ specimens (with and without post-annealing) were subjected to ADTs (accelerated degradation tests) at temperatures up to $1,700^{\circ}C$ at heating rates of 3, 4, 5, 7, and $14^{\circ}C/min$. The surface loads of all the specimen heaters were increased with the increase in the target temperature. For the $Mo_xW_{1-x}Si_2$ specimens without annealing, many pores and secondary-phase particles were observed in the microstructure; the surface load increased to $23.9W/cm^2$ at $1,700^{\circ}C$, while the bending strength drastically reduced to 242 MPa. In contrast, the $Mo_xW_{1-x}Si_2$ specimens after post-annealing retained $single-Mo_xW_{1-x}Si_2$ phases and showed superior durability after the ADT. Consequently, it is thought that the formation of microcracks and coarse secondary phases during the ADT are the main causes for the degraded performance of the $Mo_xW_{1-x}Si_2$ heating elements without post-annealing.

졸-겔법에 의해 제조된 Al-Doped ZnO 박막의 후열처리 온도에 따른 전기 및 광학적 특성 (Optical and Electrical Properties with Various Post-Heating Temperatures in the Al-Doped ZnO Thin Films by Sol-Gel Process)

  • 고석배;최문순;고형덕;이충선;태원필;서수정;김용성
    • 한국세라믹학회지
    • /
    • 제41권10호
    • /
    • pp.742-748
    • /
    • 2004
  • 비등점이 낮은 용매인 isopropanol에 용질농도 0.7mol/$\iota$ Zn acetate를 용해시키고 dopant로 Al chloride를 첨가하여 균일하고 안정한 sol을 합성하였다. 졸-겔법에 의한 Al-doped ZnO(AZO) 박막의 제조시 $500\~700^{\circ}C$의 범위에서 후열처리 온도를 제어하여 박막의 전기 및 광학적 특성을 조사하였다. 후열처리 온도가 증가할수록 (002) 면으로의 c-축 결정배향성은 증가하였고, 박막 표면은 균일한 나노입자의 미세구조를 형성하였다. 광 투과도는 $650^{\circ}C$ 이하의 후열처리 온도에서 $86\%$이상이었으나, $700^{\circ}C$에서는 감소하였다. 박막의 전기 비저항 값은 $650^{\circ}C$ 이하에서 열처리 온도가 증가함에 따라 73에서 22$\Omega$-cm로 감소하였으나 $700^{\circ}C$에서 580$\Omega$-cm로 급격히 증가하였다. 후열처리 온도 $700^{\circ}C$에서 AZO 박막의 전기 및 광학적 특성의 열화는 XPS 분석결과, 박막 표면에 석출된 $Al_2O_3$ 상에 기인하였다. AZO 박막의 전기 및 광학적 특성 향상을 위한 최적의 후열처리 온도는 $600^{\circ}C$였다.

육성용접을 통한 금형 품질 향상에 관한 연구 (Mold Quality Improvement through Overlay Welding)

  • 윤일우;황종대
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.52-57
    • /
    • 2020
  • The frequency of the manufacturing and modification of automotive press dies via overlay welding has recently increased, but the welding quality depends on the operator skills and the working conditions. Therefore, this study presents a way to improve the overlay welding quality regardless of the operator skills. Three welding conditions with different pre- and post-heating treatments were tested on some specimens; the weld surface quality was analyzed by examining the cutting face. The results demonstrated the best quality of the weld surface that was heated before and after the welding.

Post-heating behavior of concrete beams reinforced with fiber reinforced polymer bars

  • Irshidat, Mohammad R.;Haddad, Rami H.;Almahmoud, Hanadi
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1253-1269
    • /
    • 2015
  • The present paper investigates the post heating behavior of concrete beams reinforced with fiber reinforced polymer (FRP) bars, namely carbon fiber reinforced polymer (CFRP) bars and glass fiber reinforced polymer (GFRP) bars. Thirty rectangular concrete beams were prepared and cured for 28 days. Then, beams were either subjected (in duplicates) to elevated temperatures in the range (100 to $500^{\circ}C$) or left at room temperature before tested under four point loading for flexural response. Experimental results showed that beams, reinforced with CFRP and GFRP bars and subjected to temperatures below $300^{\circ}C$, showed better mechanical performance than that of corresponding ones with conventional reinforcing steel bars. The results also revealed that ultimate load capacity and stiffness pertaining to beams with FRP reinforcement decreased, yet their ultimate deflection and toughness increased with higher temperatures. All beams reinforced with FRP materials, except those post-heated to $500^{\circ}C$, failed by concrete crushing followed by tension failure of FRP bars.

유도가열 및 근적외선 가열방법에 의한 표면처리 강판 도포층의 가열 및 건조 특성 (Heating & Drying Characteristics of Coating Layer by Induction Heating and Short-wave Infrared Heating)

  • 김태수;양재원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.249-257
    • /
    • 2004
  • Drying and curing characteristics of PCM resins using the induction heater and short-wave infrared emitter module was studied to develop a compact oven system for the high speed CCL and post-treatment equipment. Drying of the polyester resins using the induction heater and infrared heater showed that the blistering tendency of polyester resin coating increased regardless of additives and colors of resins as the heating rate and/or dry film thickness increased. The blistering of polyester resin coating layer occurred when the heating speed was over than $25^{\circ}C/sec$ for the dry film thickness of $19\~20um$, which is the typical thickness of finish coating in CCL. So did it when the heating speed was over than $40^{\circ}C/sec$ for the dry film thickness over than 10 um. The heating efficiency of paint coated steels by the infrared heating was strongly dependent on the colors of paint coating and generally increased for the dark surface and/or coating. But the faster drying of the PCM resin coatings increased the blistering tendency of coating layer. The blistering limit for the typical finish coating by the infrared heating was estimated as the heating rate slower than $20^{\circ}C/sec$ regardless of colors of PCM resins.

  • PDF

수술 후 가온방법에 따른 체온과 전율의 변화 (Comparison of Forced Air Warming and Radiant Heating on Body Temperature and Shivering of Post-operative Patients)

  • 최경희
    • 성인간호학회지
    • /
    • 제20권1호
    • /
    • pp.135-148
    • /
    • 2008
  • Purpose: This study compared the effects of forced air warming and radiant heating on body temperature and shivering of patients with postoperative hypothermia. Methods: The quasi-experimental study was conducted with two experimental groups who had surgery under general anesthesia; 20 patients of group 1 experimented with the Bair Hugger as a forced air warming and 20 patients of group 2 experimented with the Radiant heater. The study was performed from July 3 to August 31, 2006 in a recovery room of an university hospital in a city. The effects of the experiment were measured by postoperative body temperature and chilling score at arrival and after every 10 minutes. The data were analyzed by t-test or ${\chi}^2$-test, repeated measures ANCOVA using SPSS/WIN 12.0. Results: The mean body temperature showed differences between the Bair Hugger group and Radiant Heater group at 40 minutes(F=-2.579, p=.034), 50minutes(F=-2.752, p=.027), and 60 minutes(F=-2.470, p=.047) after arrival to the recovery room. So, hypothesis 1 was partially accepted. The mean score of shivering showed differences between the Bair Hugger group and the Radiant Heater group, but it had no significant meaning. Hypothesis 2 was not accepted. Conclusion: We need more study to explore the effects and side effects of heating modalities to select a more effective heat treatment. The efficiency of heat modalities with regards to cost benefit, time consumption, and patients' discomfort such as burns should be considered.

  • PDF

Using ANN to predict post-heating mechanical properties of cementitious composites reinforced with multi-scale additives

  • Almashaqbeh, Hashem K.;Irshidat, Mohammad R.;Najjar, Yacoub
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.337-350
    • /
    • 2022
  • This paper focuses on predicting the post-heating mechanical properties of cementitious composites reinforced with multi-scale additives using the Artificial Neural Network (ANN) approach. A total of four different feed-forward ANN models are developed using 261 data sets collected from 18 published sources. The models are optimized using 12 input parameters selected based on a comprehensive literature review to predict the residual compressive strength, the residual flexural strengths, elastic modulus, and fracture energy of heat-damaged cementitious specimens. Furthermore, the ANN is employed to predict the impact of several variables including; the content of polypropylene (PP) microfibers and carbon nanotubes (CNTs) used in the concrete, mortar, or paste mix design, length of PP fibers, the average diameter of CNTs, and the average length of CNTs. The influence of the studied parameters is investigated at different heating levels ranged from 25℃ to 800℃. The results demonstrate that the developed ANN models have a strong potential for predicting the mechanical properties of the heated cementitious composites based on the mixing ingredients in addition to the heating conditions.