DOI QR코드

DOI QR Code

Degradation Mechanism of MoxW1-xSi2 Heating Elements Fabricated by SHS Process

SHS 공정에 의해 제조된 MoxW1-xSi2 발열체의 열화메커니즘

  • Lee, Dong-Won (Material Technology Center, Korea Testing Laboratory) ;
  • Lee, Sang-Hun (Material Technology Center, Korea Testing Laboratory) ;
  • Kim, Yong-Nam (Material Technology Center, Korea Testing Laboratory) ;
  • Lee, Sung-Chul (Production Development Headquarter, Winner Technology) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Oh, Jong-Min (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이동원 (한국산업기술시험원 재료기술센터) ;
  • 이상헌 (한국산업기술시험원 재료기술센터) ;
  • 김용남 (한국산업기술시험원 재료기술센터) ;
  • 이성철 ((주)위너테크놀러지) ;
  • 구상모 (광운대학교 전자재료공학과) ;
  • 오종민 (광운대학교 전자재료공학과)
  • Received : 2017.02.13
  • Accepted : 2017.08.12
  • Published : 2017.10.01

Abstract

The degradation mechanism of $Mo_xW_{1-x}Si_2$ ultrahigh-temperature heating elements fabricated by self-propagating high-temperature synthesiswas investigated. The $Mo_xW_{1-x}Si_2$ specimens (with and without post-annealing) were subjected to ADTs (accelerated degradation tests) at temperatures up to $1,700^{\circ}C$ at heating rates of 3, 4, 5, 7, and $14^{\circ}C/min$. The surface loads of all the specimen heaters were increased with the increase in the target temperature. For the $Mo_xW_{1-x}Si_2$ specimens without annealing, many pores and secondary-phase particles were observed in the microstructure; the surface load increased to $23.9W/cm^2$ at $1,700^{\circ}C$, while the bending strength drastically reduced to 242 MPa. In contrast, the $Mo_xW_{1-x}Si_2$ specimens after post-annealing retained $single-Mo_xW_{1-x}Si_2$ phases and showed superior durability after the ADT. Consequently, it is thought that the formation of microcracks and coarse secondary phases during the ADT are the main causes for the degraded performance of the $Mo_xW_{1-x}Si_2$ heating elements without post-annealing.

Keywords

References

  1. P. La, Q. Xue, and W. Liu, Intermetallics, 11, 541 (2003). [DOI: http://dx.doi.org/10.1016/S0966-9795(03)00041-4]
  2. C. Gras, D. Vrel, E. Gaffet, and F. Bernard, J. Alloys Compd., 314, 240 (2001). [DOI: http://dx.doi.org/10.1016/S0925-8388(00)01221-4]
  3. J. Xu, H. Wu, and B. Li, Int. J. Refract. Met. Hard Mater, 28, 217 (2010). [DOI: https://doi.org/10.1016/j.ijrmhm.2009.10.001]
  4. S. Zamani, H. R. Bakhsheshi-Rad, M.R.A. Kadir, and M.R.M. Shafiee, J. Alloys Compd., 540, 248 (2012). [DOI: http://dx.doi.org/10.1016/j.jallcom.2012.06.072]
  5. L. Sun and J. Pan, J. Eur. Ceram. Soc., 22, 791 (2002). [DOI: http://dx.doi.org/10.1016/S0955-2219(01)00378-8]
  6. T. Dasgupta, A. K. Bhattacharya, and A. M. Umarji, Solid State Commun., 126, 573 (2003). [DOI: http://dx.doi.org/10.1016/S0038-1098(03)00300-4]
  7. H. Zhang and X. Liu, Int. J. Refract. Met. Hard Mater, 19, 203 (2001). [DOI: http://dx.doi.org/10.1016/S0263-4368(01)00050-6]
  8. B. K. Yen, T. Aizawa, and J. Kihara, Mater. Sci. Eng., A, 220, 8 (1996). [DOI: http://dx.doi.org/10.1016/S0921-5093(96)10430-5]
  9. Y. L. Jeng and E. J. Lavernia, J. Mater. Sci., 29, 2557 (1994). [DOI: https://doi.org/10.1007/bf00356804]
  10. S. W. Jo, G. W. Lee, J. T. Moon, and Y. S. Kim, Acta Mater., 44, 4317 (1996). [DOI: http://dx.doi.org/10.1016/1359-6454(96)00106-1]
  11. S. Zhang and Z. A. Munir, J. Mater. Sci., 26, 3685 (1994). [DOI: https://doi.org/10.1007/bf00557164]
  12. S. Paswan, R. Mirta, and S. K. Roy, Mater. Sci. Eng., A, 424, 251 (2006). [DOI: http://dx.doi.org/10.1016/j.msea.2006.03.014]
  13. S. X. Hou, Z. D. Liu, D. Y. Liu, B. R. Li, and N. Q. Zhang, Mater. Sci. Eng., A, 518, 108 (2009). [DOI: http://dx.doi.org/10.1016/j.msea.2009.04.026]
  14. C. G. Mckamey, P. F. Tortorelli, J. H. DeVan, and C. A. Carmichael, J. Mater. Res., 7, 2747 (1992). [DOI: https://doi.org/10.1557/JMR.1992.2747]
  15. K. Hasson, M. Halvarsson, J. E. Tang, R. Pompe, M. Sundberg, and J. E. Svensson, J. Eur. Ceram. Soc., 24, 3559 (2004). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2003.11.024]