• 제목/요약/키워드: post-disaster

Search Result 251, Processing Time 0.023 seconds

A Development Of A System For Earthquake Warning Using Social Media (소셜미디어를 이용한 지진정보전달 시스템 개발)

  • Jeon, Inchan;Choi, Seong-Jong;Lee, Yong-Tae;Hong, Sung-Dae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.169-175
    • /
    • 2012
  • The Great East Japan Earthquake left some implications. Especially the case of alerting by social media had present. This paper suggests system for posting earthquake information to microblog like twitter and me2day. Microblog is most efficient and effective social media. So, this system receive earthquake information from the Earthquake Broadcast System in the Korea Meteorological Administration and post the information to twitter and me2day. By this system, earthquake information can be notice easily and response can be checked.

Constructing Landscape as an Operational Multi-Environmental Control Utility and Green Infrastructure - Landscape Design for National Marine Biology Resource Institute - (작동하는 복합환경조절장치 및 녹색기반시설로서 조경 - 국립해양생물자원관 옥외공간 설계 -)

  • Sung, Jongsang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.41-56
    • /
    • 2012
  • Landscape space can and should play as a multi-functional agent : healing contaminated soil, reducing natural hazards, supporting living things, making comfortable environment for human, and appealing to human aesthetics, etc. This article aims to show the possibility and role of landscape space as such agent. In landscape design for National Marine Biology Resource Institute, distributed rain water treatment system and rain gardens are introduced to replace a mono-functioning large detention pond which was suggested by disaster impact assesment. Phytoremediation and vegetation filtering system with muti-cell wetlands are also adapted to heal the contaminated soil. This kind of landscape as a 'living machine' which can play as an operational control utility of multi-environment and thus can be combined effectively into green infrastructure is important for post-industrial city, especially in an era of climate change.

An Off-site Screening Process for the Public in Radiation Emergencies and Disasters

  • Yoon, Seokwon;HA, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.301-309
    • /
    • 2016
  • Background: A contamination screening process for the local population in radiation emergencies is discussed. Materials and Methods: We present an overview of the relevant Korean governmental regulations that underpin the development of an effective response system. Moreover, case studies of foreign countries responding to mass casualties are presented, and indicate that responses should be able to handle a large demand for contamination screening of the local public as well as screening of the immediate victims of the incident. Results and Discussion: We propose operating procedures for an off-site contamination screening post operated by the local government for members of the public who have not been directly harmed in the accident. In order to devise screening categories, sorting strategies assessing contamination and exposure are discussed, as well as a psychological response system. Conclusion: This study will lead to the effective operation of contamination screening clinics if an accident occurs. Furthermore, the role of contamination screening clinics in the overall context of the radiation emergency treatment system should be clearly established.

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.

Assessing the capability of HEC-RAS coupled 1D-2D model through comparison with 2-dimensional flood models

  • Dasallas, Lea;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.158-158
    • /
    • 2019
  • Recent studies show the possibility of more frequent extreme events as a result of the changing climate. These weather extremes, such as excessive rainfall, result to debris flow, river overflow and urban flooding, which post a substantial threat to the community. Therefore, an effective flood model is a crucial tool in flood disaster mitigation. In recent years, a number of flood models has been established; however, the major challenge in developing effective and accurate inundation models is the inconvenience of running multiple models for separate conditions. Among the solutions in recent researches is the development of the combined 1D-2D flood modeling. The coupled 1D-2D river flood modeling allows channel flows to be represented in 1D and the overbank flow to be modeled over two-dimension. To test the efficiency of this approach, this research aims to assess the capability of HEC-RAS model's implementation of the combined 1D-2D hydraulic simulation of river overflow inundation, and compare with the results of GERIS and FLUMENS 2D flood model. Results show similar output to the flood models that had used different methods. This proves the applicability of the HEC-RAS 1D-2D coupling method as a powerful tool in simulating accurate inundation for flood events.

  • PDF

Effects of 119 Paramedics Wearing Personal Protective Equipment on Blood Pressure, Pulse, and Breathing (119구급대원의 개인보호장비 착용이 혈압·맥박·호흡에 미치는 영향)

  • Yi, Seung-Ku;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.89-96
    • /
    • 2021
  • This study analyzed the physical changes in 119 paramedics transporting equipment at the emergency site and performing post-cardiopulmonary resuscitation through experiments. First, the average heart rate increased by about 25 times comparing CPR was performed without physical load and with personal protective equipment after moving equipment. In the third quartile, it increased to about 27 times. Second, when CPR was performed without physical load, and CPR was performed after moving the equipment with personal protective equipment, both the body temperature was raised and the rising body temperature was measured within normal body temperature. Third, the change in respiration rate increased by 7 times on average comparing CPR was performed without physical load and CPR was performed after moving the equipment while wearing personal protective equipment. In the third quartile, it increased to about 11 times. Finally, the change in blood pressure increased by 26.6 mmHg on average comparing CPR was performed without physical load and with wearing personal protective equipment after moving the equipment, and increased by 31.2 mmHg on average in the third quartile.

A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia

  • Hakim, Wahyu Luqmanul;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1303-1322
    • /
    • 2020
  • Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.

Brace-type shear fuses for seismic control of long-span three-tower self-anchored suspension bridge

  • Shao, Feifei;Jia, Liangjiu;Ge, Hanbin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.147-161
    • /
    • 2022
  • The Brace-Type Shear Fuse (BSF) device is a newly proposed steel damper with excellent cumulative ductility and stable energy dissipation. In consideration of the current situation where there are not many alternatives for transversal seismic devices used in long-span three-tower self-anchored bridges (TSSBs), this paper implements improved BSFs into the world's longest TSSB, named Jinan Fenghuang Yellow River Bridge. The new details of the BSF are developed for the TSSB, and the force-displacement hysteretic curves of the BSFs are obtained using finite element (FE) simulations. A three-dimensional refined finite element model for the research TSSB was established in SAP2000, and the effects of BSFs on dynamic characteristics and seismic response of the TSSB under different site conditions were investigated by the numerical simulation method. The results show that remarkable controlling effects of BSFs on seismic response of TSSBs under different site conditions were obtained. Compared with the case without BSFs, the TSSB installed with BSFs has mitigation ratios of the tower top displacement, lateral girder displacement, tower bending moment and tower shear force exceeding 95%, 78%, 330% and 346%, respectively. Meanwhile, BSFs have a sufficient restoring force mechanism with a minor post-earthquake residual displacement. The proposed BSFs exhibit good application prospects in long-span TSSBs.

Operation Room Fire: Caution for Using Electrocautery after Rinsing Operation Field at the End of the Surgery with Alcohol-Based Cleansing Solutions (수술방 화재: 수술 종료 시 알코올 함유 피부 소독액을 이용한 수술부위 세척 이후 전기소작기 사용 주의)

  • Song, Jong Keun;Shin, Hyojeong;Lee, Jun Yong
    • Journal of the Korean Burn Society
    • /
    • v.22 no.2
    • /
    • pp.34-37
    • /
    • 2019
  • Fires in operating rooms rarely occur. However, this type of disaster can complicate almost any surgical procedure. Fuel, heat and oxygen are related with fire outbreak. When ignition sources such as alcohol-based surgical preparation solutions are present, the risk of an operating room fire increases, and burns are more severe in such conditions. Many manufacturers recommend waiting at least three minutes after application to allow complete drying for reduce fire risk. There are a few studies regarding flame burns in the operation room, although most of these studies are related to preoperative skin preparation. However, alcohol containing solutions can be used occasionally for cleansing of the operation field after the surgery, therefore, the surgical team should pay attention to surgical fires, even if they have completed the operation successfully. We present our case of a post-operative flame burn and introduce some precautions that will reduce the risk of alcohol burns.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.