• Title/Summary/Keyword: post-damage repair

Search Result 52, Processing Time 0.029 seconds

A Prototype of Distributed Simulation for Facility Restoration Operation Analysis through Incorporation of Immediate Damage Assessment

  • Hwang, Sungjoo;Choi, MinJi;Starbuck, Richmond;Lee, SangHyun;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.339-343
    • /
    • 2015
  • To rapidly recover ceased functionality of a facility after a catastrophic seismic event, critical decisions on facility repair works are made within a limited period of time. However, prolonged damage assessment of facilities, due to massive damage in the surrounding region and the complicated damage judgment procedures, may impede restoration planning. To assist reliable structural damage estimation without a deep knowledge and rapid interactive analysis among facility damage and restoration operations during the approximate restoration project planning phase, we developed a prototype of distributed facility restoration simulations through the use of high-level architecture (HLA) (IEEE 1516). The simulation prototype, in which three different simulations (including a seismic data retrieval technique, a structural response simulator, and a restoration simulation module) interact with each other, enables immediate damage estimation by promptly detecting earthquake intensity and the restoration operation analysis according to estimated damage. By conducting case simulations and experiments, research outcomes provide key insights into post-disaster restoration planning, including the extent to which facility damage varies according to disaster severity, facility location, and structures. Additional insights arise regarding the extent to which different facility damage patterns impact a project's performance, especially when facility damage is hard to estimate by observation. In particular, an understanding of required type and amount of repair activities (e.g., demolition works, structural reinforcement, frame installation, or finishing works) is expected to support project managers in approximate work scheduling or resource procurement plans.

  • PDF

Evaluation of Post-earthquake Seismic Capacity of Reinforced Concrete Buildings suffering from earthquakes (지진피해를 받은 철근콘크리트 건물의 잔존내진성능평가)

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.105-108
    • /
    • 2005
  • In damage investigation of building structures suffering from earthquake, estimation of residual seismic capacity is essential in order to access the safety of the building against aftershocks and to judge the necessity of repair and restoration. It has been proposed that an evaluation method for post-earthquake seismic capacity of reinforced concrete buildings based. on the residual energy dissipation capacity (the residual seismic capacity ratio )in lateral force-displacement curve of structural members. The proposed method was adopted in the Japanese 'Damage Level Classification Standard' revised in 200l. To evaluate the residual seismic capacity of RC column, experimental tests with positive and negative cyclic loading was carried out using RC building column specimen. Parameters used by the experiment are deformability and member proportion. From the test results, it is appropriated that the residual seismic capacity of RC buildings damaged by earthquakes is evaluated using the method in the Guideline.

  • PDF

Interferon-Stimulated Gene 15 in the Control of Cellular Responses to Genotoxic Stress

  • Jeon, Young Joo;Park, Jong Ho;Chung, Chin Ha
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • Error-free replication and repair of DNA are pivotal to organisms for faithful transmission of their genetic information. Cells orchestrate complex signaling networks that sense and resolve DNA damage. Post-translational protein modifications by ubiquitin and ubiquitin-like proteins, including SUMO and NEDD8, are critically involved in DNA damage response (DDR) and DNA damage tolerance (DDT). The expression of interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, has recently been shown to be induced under various DNA damage conditions, such as exposure to UV, camptothecin, and doxorubicin. Here we overview the recent findings on the role of ISG15 and its conjugation to target proteins (e.g., p53,$ {\Delta}Np63{\alpha}$, and PCNA) in the control of cellular responses to genotoxic stress, such as the inhibition of cell growth and tumorigenesis.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.

Seismic behaviour of repaired superelastic shape memory alloy reinforced concrete beam-column joint

  • Nehdi, Moncef;Alam, M. Shahria;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.329-348
    • /
    • 2011
  • Large-scale earthquakes pose serious threats to infrastructure causing substantial damage and large residual deformations. Superelastic (SE) Shape-Memory-Alloys (SMAs) are unique alloys with the ability to undergo large deformations, but can recover its original shape upon stress removal. The purpose of this research is to exploit this characteristic of SMAs such that concrete Beam-Column Joints (BCJs) reinforced with SMA bars at the plastic hinge region experience reduced residual deformation at the end of earthquakes. Another objective is to evaluate the seismic performance of SMA Reinforced Concrete BCJs repaired with flowable Structural-Repair-Concrete (SRC). A $\frac{3}{4}$-scale BCJ reinforced with SMA rebars in the plastic-hinge zone was tested under reversed cyclic loading, and subsequently repaired and retested. The joint was selected from an RC building located in the seismic region of western Canada. It was designed and detailed according to the NBCC 2005 and CSA A23.3-04 recommendations. The behaviour under reversed cyclic loading of the original and repaired joints, their load-storey drift, and energy dissipation ability were compared. The results demonstrate that SMA-RC BCJs are able to recover nearly all of their post-yield deformation, requiring a minimum amount of repair, even after a large earthquake, proving to be smart structural elements. It was also shown that the use of SRC to repair damaged BCJs can restore its full capacity.

Effect of DNA Repair Inhibitors and Iron on the Chromosome Aberration Induced by Bleomycin and Hydrogen Peroxide in CHO Cells (DNA 회복합성저해제 및 철이 Bleomycin과 과산화수소에 의해 유발된 CHO 세포의 염색체 이상빈도에 미치는 영향)

  • 정해원;유은경
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.59-66
    • /
    • 1993
  • The cellular toxicity and antitumor effects of bleomycin are thought to be occurred by formation of O$_2$-Fe$^{2+}$-bleomycin complexes that degrade DNA and release O$_2^-$ and $^{\cdot}$OH radicals. Hydroxyl radicals derived from hydrogen peroxide seem most likely to be involved in the various stages of carcinogenesis, and transition metals such as iron play a central role in activation of bleomycin and in formation of hydroxyl radicals. This study was performed to investigate whether treatment with ferrous sulfate increase chromosome aberration induced by bleomycin and hydrogen peroxide, and whether there is different repair mechanism for DNA damage induced by those chemicals. Treatment with 3AB, Ara C, during G$_1$ and post-treatment with caffeine, and Hu during G$_2$ increased the frequency of chromosome aberration induced by bleomycin but post-treatment with caffeine only did function that way when hydrogen peroxide was treated. When 6.6X 10$^{-7}$ M of bleomycin or 5.0X10$^{-5}$M of hydrogen peroxide were treated simultaneously with iron, the frequency of chromosome aberration was reduced, if compared with the results by bleomycin or hydrogen per oxide alone.

  • PDF

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

Effects of Ginseng Protein on Relative Survival and Chromosome Aberration of UV Irradiated Cells

  • Kim, Choon-Mi;Park, So-Young
    • Archives of Pharmacal Research
    • /
    • v.11 no.3
    • /
    • pp.225-229
    • /
    • 1988
  • A ginseng protein fraction which has been reported to have radiation protective effect was purified from Korean ginseng and its effects on relative survival and chromosome aberration were studied in UV irradiated CHO-K1 cells. When the protein fraction $(100\;{\mu}g/ml)$ was added to the cells before UV irradiation at 4\;J/$m^2$,, the survival rates were increased to 53.8% from 40.6% in control. Addition of the protein $(100\;{\mu}g/ml)$ after UV irradiation at 4 and $8\;J/m^2$ raised the rates to 85.4 and 24.0% from 79.2 and 11.5% in control, respectively. When the ginseng protein $(800\;{\mu}g/ml)$ was added to the cells exposed to UV light at 10, 20, $30\;J/m^2$, the frequencies of chromosome aberration (CA) were reduced significantly to almost same level regardless of the UV dose increment and there was no significant difference between pre- and post-treatment. When the concentration of ginseng protein was increased from 200 to $800\;{\mu}g/ml$, at UV dose of 10, 20, $30\;J/m^2$ each, the CA frequencies were decreased consistently as the dose of ginseng protein increased, at all UV doses tested. Similar effects were observed in both cases of pre- and post-treatment. The data suggest that the protein may reduce cell damage caused by UV light, especially damage to DNA molecule, or play a role in repair processes of damaged DNA, to increase cell survival and reduce chromosome aberrations.

  • PDF

Post-cancer treatment of Condurango 30C, traditionally used in homeopathy, ameliorates tissue damage and stimulates reactive oxygen species in benzo[a]pyrene-induced lung cancer of rat

  • Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.3 no.3
    • /
    • pp.25.1-25.8
    • /
    • 2013
  • Homoeopathically prepared Condurango 30C is traditionally used in amelioration of certain types of cancer by homeopathic practitioners. In this study, ability of Condurango 30C in amelioration of the conventional benzo[a]pyrene (BaP)-induced lung cancer in rat has been tested. After one month of scheduled oral feeding of BaP, lung cancer is routinely developed after four months in rats. Tumorbearing rats were then treated with Condurango 30C for the next one ($5^{th}$), two ($6^{th}$) and three ($7^{th}$) months, respectively, and sacrificed. Efficacy of post-cancer treatment by Condurango 30C was evaluated against controls (placebo) by different study parameters like: body and lung weights, number and diameter of lung tumour nodules, lung architecture, DNA damage, anti-oxidant activity and reactive oxygen species (ROS) accumulation. Administration of this homeopathic remedy caused increase of body weight and decrease of lung weight, decrease in number and diameter of lung tumour nodules, particularly after one and two months of drug treatment. BaP intoxication significantly increased lipid peroxidase (LPO) with concomitant decrease in activities of different antioxidants, while Condurango 30C administration certainly reduce their levels than normal and cancerous groups, notably after one and two months' of drug treatment. Condurango 30C showed capability to induce ROS-mediated cell death evidenced from the study of ROS activities at different time-points. Further, the remedy possibly achieved its anticancer goal through mediation of DNA-nicks that possibly led cancer cells to the apoptotic pathway. Thus, Condurango 30C has anticancer potential in BaP-induced lung cancer of rats via tissue damage recovery and ROS-mediated programmed cell death.

Mechanical Properties for Welding Part on Ni Base Superalloy Material According to Heat Treatment Parameters (열처리조건에 따른 Ni기지 초합금 용접부의 기계적 특성)

  • Yang, Sung-Ho;Park, Sang-Yeol;Choi, Hee-Sook;Ko, Won;Chae, Na-Hyun;Kim, Moon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • The operating temperature has been increased to improve the efficiency of gas turbine. The most advanced Gas turbine is operated at above $1,500^{\circ}C$. Improvement in material and cooling method permit hot gas path component to run at increased temperature. But, the repair of blades which are developed with advanced manufacture technique is difficult to use normal welding. Most of gas turbine blades are made of precipitation harden nickel base superalloy, which is very hard to weld. Therefore, the employment of welding filler on blade is solid solution nickel base superalloy(Hastelloy X, Inconel 617). In this study, Tensile test in high temperature was conducted on welded GTD111DS with GTD111 to evaluate effect of variation of pre, post treatment. The result of this study showed that the specimen was treated with optimum pre and post treatment(preweld HT($1200^{\circ}C$), Post treatment($1100^{\circ}C$ HIP, $1200^{\circ}C$ + $1100^{\circ}C$ + $800^{\circ}C$ HT) is mush superior.