References
- Arimoto, K., Konishi, H., and Shimotohno, K. (2008). UbcH8 regulates ubiquitin and ISG15 conjugation to RIG-I. Mol. Immunol. 45, 1078-1084. https://doi.org/10.1016/j.molimm.2007.07.021
- Ashcroft, M., and Vousden, K.H. (1999). Regulation of p53 stability. Oncogene 18, 7637-7643. https://doi.org/10.1038/sj.onc.1203012
- Bergink, S., and Jentsch, S. (2009). Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461-467. https://doi.org/10.1038/nature07963
- Bienko, M., Green, C.M., Crosetto, N., Rudolf, F., Zapart, G., Coull, B., Kannouche, P., Wider, G., Peter, M., Lehmann, A.R., et al. (2005). Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821-1824. https://doi.org/10.1126/science.1120615
- Brown, J.S., and Jackson, S.P. (2015). Ubiquitylation, neddylation and the DNA damage response. Open Biol. 5, 150018. https://doi.org/10.1098/rsob.150018
- Carroll, D.K., Carroll, J.S., Leong, C.O., Cheng, F., Brown, M., Mills, A.A., Brugge, J.S., and Ellisen, L.W. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nat. Cell Biol. 8, 551-561. https://doi.org/10.1038/ncb1420
- Dantuma, N.P., and van Attikum, H. (2016). Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J. 35, 6-23. https://doi.org/10.15252/embj.201592595
- Dipple, A. (1995). DNA adducts of chemical carcinogens. Carcinogenesis 16, 437-441. https://doi.org/10.1093/carcin/16.3.437
- el-Deiry, W.S., Harper, J.W., O'Connor, P.M., Velculescu, V.E., Canman, C.E., Jackman, J., Pietenpol, J.A., Burrell, M., Hill, D.E., Wang, Y., et al. (1994). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54, 1169-1174.
- Farrell, P.J., Broeze, R.J., and Lengyel, P. (1979). Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 279, 523-525. https://doi.org/10.1038/279523a0
- Flores, E.R., Tsai, K.Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F., and Jacks, T. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560-564. https://doi.org/10.1038/416560a
- Frias-Staheli, N., Giannakopoulos, N.V., Kikkert, M., Taylor, S.L., Bridgen, A., Paragas, J., Richt, J.A., Rowland, R.R., Schmaljohn, C.S., Lenschow, D.J., et al. (2007). Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2, 404-416. https://doi.org/10.1016/j.chom.2007.09.014
- Gentile, M., Latonen, L., and Laiho, M. (2003). Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucl. Acids Res. 31, 4779-4790. https://doi.org/10.1093/nar/gkg675
- Giannakopoulos, N.V., Arutyunova, E., Lai, C., Lenschow, D.J., Haas, A.L., and Virgin, H.W. (2009). ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus. J. Virol. 83, 1602-1610. https://doi.org/10.1128/JVI.01590-08
- Green, D.R., and Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127-1130. https://doi.org/10.1038/nature07986
- Guo, X., Keyes, W.M., Papazoglu, C., Zuber, J., Li, W., Lowe, S.W., Vogel, H., and Mills, A.A. (2009). TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat.Cell Biol. 11, 1451-1457. https://doi.org/10.1038/ncb1988
- Haas, A.L., Ahrens, P., Bright, P.M., and Ankel, H. (1987). Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem. 262, 11315-11323.
- Harper, J.W., and Elledge, S.J. (2007). The DNA damage response: ten years after. Mol. Cell 28, 739-745. https://doi.org/10.1016/j.molcel.2007.11.015
- Harrison, J.C., and Haber, J.E. (2006). Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40, 209-235. https://doi.org/10.1146/annurev.genet.40.051206.105231
- Hibi, K., Trink, B., Patturajan, M., Westra, W.H., Caballero, O.L., Hill, D.E., Ratovitski, E.A., Jen, J., and Sidransky, D. (2000). AIS is an oncogene amplified in squamous cell carcinoma. Proc. Nat. Acad. Sci. USA 97, 5462-5467. https://doi.org/10.1073/pnas.97.10.5462
- Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141. https://doi.org/10.1038/nature00991
- Jackson, S.P., and Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature 461, 1071-1078. https://doi.org/10.1038/nature08467
- Jackson, S.P., and Durocher, D. (2013). Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49, 795-807. https://doi.org/10.1016/j.molcel.2013.01.017
- Jentsch, S., and Pyrowolakis, G. (2000). Ubiquitin and its kin: how close are the family ties? Trends Cell Biol. 10, 335-342. https://doi.org/10.1016/S0962-8924(00)01785-2
- Jeon, Y.J., Choi, J.S., Lee, J.Y., Yu, K.R., Kim, S.M., Ka, S.H., Oh, K.H., Kim, K.I., Zhang, D.E., Bang, O.S., et al. (2009). ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway. EMBO Rep. 10, 374-380. https://doi.org/10.1038/embor.2009.23
- Jeon, Y.J., Yoo, H.M., and Chung, C.H. (2010). ISG15 and immune diseases. Biochim. Biophys. Acta 1802, 485-496. https://doi.org/10.1016/j.bbadis.2010.02.006
- Jeon, Y.J., Jo, M.G., Yoo, H.M., Hong, S.H., Park, J.M., Ka, S.H., Oh, K.H., Seol, J.H., Jung, Y.K., and Chung, C.H. (2012). Chemosensitivity is controlled by p63 modification with ubiquitin-like protein ISG15. J. Clin. Inv. 122, 2622-2636. https://doi.org/10.1172/JCI61762
- Kannouche, P.L., and Lehmann, A.R. (2004). Ubiquitination of PCNA and the polymerase switch in human cells. Cell cycle 3, 1011-1013.
- Kannouche, P.L., Wing, J., and Lehmann, A.R. (2004). Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491-500. https://doi.org/10.1016/S1097-2765(04)00259-X
- Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159-180. https://doi.org/10.1146/annurev.cellbio.22.010605.093503
- Kim, M.J., Latham, A.G., and Krug, R.M. (2002). Human influenza viruses activate an interferon-independent transcription of cellular antiviral genes: outcome with influenza A virus is unique. Proc. Nat. Acad. Sci. USA 99, 10096-10101. https://doi.org/10.1073/pnas.152327499
- Kim, K.I., Giannakopoulos, N.V., Virgin, H.W., and Zhang, D.E. (2004). Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol. Cell. Biol. 24, 9592-9600. https://doi.org/10.1128/MCB.24.21.9592-9600.2004
- Kim, M.J., Hwang, S.Y., Imaizumi, T., and Yoo, J.Y. (2008). Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J. Virol. 82, 1474-1483. https://doi.org/10.1128/JVI.01650-07
- Lai, C., Struckhoff, J.J., Schneider, J., Martinez-Sobrido, L., Wolff, T., Garcia-Sastre, A., Zhang, D.E., and Lenschow, D.J. (2009). Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. J. Virol. 83, 1147-1151. https://doi.org/10.1128/JVI.00105-08
- Lehmann, A.R., Niimi, A., Ogi, T., Brown, S., Sabbioneda, S., Wing, J.F., Kannouche, P.L., and Green, C.M. (2007). Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair 6, 891-899. https://doi.org/10.1016/j.dnarep.2007.02.003
- Lenschow, D.J., Lai, C., Frias-Staheli, N., Giannakopoulos, N.V., Lutz, A., Wolff, T., Osiak, A., Levine, B., Schmidt, R.E., Garcia-Sastre, A., et al. (2007). IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Nat. Acad. Sci. USA 104, 1371-1376. https://doi.org/10.1073/pnas.0607038104
- Leong, C.O., Vidnovic, N., DeYoung, M.P., Sgroi, D., and Ellisen, L.W. (2007). The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J. Clin. Inv. 117, 1370-1380. https://doi.org/10.1172/JCI30866
- Levine, A.J., Tomasini, R., McKeon, F.D., Mak, T.W., and Melino, G. (2011). The p53 family: guardians of maternal reproduction. Nat. Rev. Mol. Cell Biol. 12, 259-265. https://doi.org/10.1038/nrm3086
- Lindahl, T., and Barnes, D.E. (2000). Repair of endogenous DNA damage. Cold Spring Harbor Symp. Quant. Biol. 65, 127-133. https://doi.org/10.1101/sqb.2000.65.127
- Lindner, H.A., Fotouhi-Ardakani, N., Lytvyn, V., Lachance, P., Sulea, T., and Menard, R. (2005). The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. 79, 15199-15208. https://doi.org/10.1128/JVI.79.24.15199-15208.2005
- Liu, M., Hummer, B.T., Li, X., and Hassel, B.A. (2004). Camptothecin induces the ubiquitin-like protein, ISG15, and enhances ISG15 conjugation in response to interferon. J. Interferon Cytokine Res. 24, 647-654. https://doi.org/10.1089/jir.2004.24.647
- Loeb, K.R., and Haas, A.L. (1992). The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J. Biol. Chem. 267, 7806-7813.
- Loeb, L.A., and Monnat, R.J., Jr. (2008). DNA polymerases and human disease. Nat. Rev. Genet. 9, 594-604. https://doi.org/10.1038/nrg2345
- Loo, Y.M, Owen D.M., Li, K., Erickson, A.K., Johnson, C.L., Fish, P.M., Carney, D.S., Wang, T., Ishida, H., Yoneyama, M., et al. (2006). Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc. Nat. Acad. Sci. USA 103, 6001-6006 https://doi.org/10.1073/pnas.0601523103
- Lu, G., Reinert, J.T., Pitha-Rowe, I., Okumura, A., Kellum, M., Knobeloch, K.P., Hassel, B., and Pitha, P.M. (2006). ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation. Cell. Mol. Biol. 52, 29-41.
- Mailand, N., Gibbs-Seymour, I., and Bekker-Jensen, S. (2013). Regulation of PCNA-protein interactions for genome stability. Nat. Rev. Mol. Cell Biol. 14, 269-282. https://doi.org/10.1038/nrm3562
- Malakhov, M.P., Malakhova, O.A., Kim, K.I., Ritchie, K.J., and Zhang, D.E. (2002). UBP43 (USP18). specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277, 9976-9981. https://doi.org/10.1074/jbc.M109078200
- Malakhova, O.A., and Zhang, D.E. (2008). ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J. Biol. Chem. 283, 8783-8787. https://doi.org/10.1074/jbc.C800030200
- Malakhova, O., Malakhov, M., Hetherington, C., and Zhang, D.E. (2002). Lipopolysaccharide activates the expression of ISG15-specific protease UBP43 via interferon regulatory factor 3. J. Biol. Chem. 277, 14703-14711. https://doi.org/10.1074/jbc.M111527200
- Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F., and Kunkel, T.A. (2000). Low fidelity DNA synthesis by human DNA polymeraseeta. Nature 404, 1011-1013. https://doi.org/10.1038/35010014
- Melino, G. (2011). p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Diff. 18, 1487-1499. https://doi.org/10.1038/cdd.2011.81
- Mills, A.A., Zheng, B., Wang, X.J., Vogel, H., Roop, D.R., and Bradley, A. (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708-713. https://doi.org/10.1038/19531
- Miyashita, T., and Reed, J.C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299. https://doi.org/10.1016/0092-8674(95)90412-3
- Moldovan, G.L., Pfander, B., and Jentsch, S. (2007). PCNA, the maestro of the replication fork. Cell 129, 665-679. https://doi.org/10.1016/j.cell.2007.05.003
- Nakano, K., and Vousden, K.H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683-694. https://doi.org/10.1016/S1097-2765(01)00214-3
- Okumura, A., Pitha, P.M., and Harty, R.N. (2008). ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc. Nat. Acad. Sci. USA 105, 3974-3979. https://doi.org/10.1073/pnas.0710629105
- Oliner, J.D., Kinzler, K.W., Meltzer, P.S., George, D.L., and Vogelstein, B. (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80-83. https://doi.org/10.1038/358080a0
- Park, J.M., Yang, S.W., Yu, K.R., Ka, S.H., Lee, S.W., Seol, J.H., Jeon, Y.J., and Chung, C.H. (2014). Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis. Mol. Cell 54, 626-638. https://doi.org/10.1016/j.molcel.2014.03.031
- Park, J.H., Yang, S.W., Park, J.M., Ka, S.H., Kim, J.H., Kong, Y.Y., Jeon, Y.J., Seol, J.H., and Chung, C.H. (2016). Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification. Nat. Commun. 7, 12513. https://doi.org/10.1038/ncomms12513
- Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferonmediated signalling. Nat. Rev. Immunol. 5, 375-386. https://doi.org/10.1038/nri1604
- Ratia, K., Pegan, S., Takayama, J., Sleeman, K., Coughlin, M., Baliji, S., Chaudhuri, R., Fu, W., Prabhakar, B.S., Johnson, M.E., et al. (2008). A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Nat. Acad. Sci. USA 105, 16119-16124. https://doi.org/10.1073/pnas.0805240105
- Reich, N., Evans, B., Levy, D., Fahey, D., Knight, E., Jr., and Darnell, J.E., Jr. (1987). Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc. Nat. Acad. Sci. USA 84, 6394-6398. https://doi.org/10.1073/pnas.84.18.6394
- Riley, T., Sontag, E., Chen, P., and Levine, A. (2008). Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402-412. https://doi.org/10.1038/nrm2395
- Roos, W.P., Thomas, A.D., and Kaina, B. (2016). DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16, 20-33. https://doi.org/10.1038/nrc.2015.2
- Rouse, J., and Jackson, S.P. (2002). Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547-551. https://doi.org/10.1126/science.1074740
- Sale, J.E. (2012). Competition, collaboration and coordinationdetermining how cells bypass DNA damage. J. Cell Sci. 125, 1633-1643. https://doi.org/10.1242/jcs.094748
- Sale, J.E., Lehmann, A.R., and Woodgate, R. (2012). Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13, 141-152. https://doi.org/10.1038/nrm3289
- Sarkaria, J.N., Busby, E.C., Tibbetts, R.S., Roos, P., Taya, Y., Karnitz, L.M., and Abraham, R.T. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59, 4375-4382.
- Sayan, B.S., Sayan, A.E., Yang, A.L., Aqeilan, R.I., Candi, E., Cohen, G.M., Knight, R.A., Croce, C.M., and Melino, G. (2007). Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proc. Nat. Acad. Sci. USA 104, 10871-10876. https://doi.org/10.1073/pnas.0700761104
- Stelter, P., and Ulrich, H.D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191. https://doi.org/10.1038/nature01965
- Suh, E.K., Yang, A., Kettenbach, A., Bamberger, C., Michaelis, A.H., Zhu, Z., Elvin, J.A., Bronson, R.T., Crum, C.P., and McKeon, F. (2006). p63 protects the female germ line during meiotic arrest. Nature 444, 624-628. https://doi.org/10.1038/nature05337
- Taniguchi, T., and Takaoka, A. (2001). A weak signal for strong responses: interferon-alpha/beta revisited. Nat. Rev. Mol. Cell Biol. 2, 378-386. https://doi.org/10.1038/35073080
- Ulrich, H.D., and Walden, H. (2010). Ubiquitin signalling in DNA replication and repair. Nature reviews. Mol. Cell Biol. 11, 479-489. https://doi.org/10.1038/nrm2921
- Wong, J.J., Pung, Y.F., Sze, N.S., and Chin, K.C. (2006). HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFNinduced ISGylation of protein targets. Proc. Nat. Acad. Sci. USA 103, 10735-10740. https://doi.org/10.1073/pnas.0600397103
- Wu, X., Bayle, J.H., Olson, D., and Levine, A.J. (1993). The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126-1132. https://doi.org/10.1101/gad.7.7a.1126
- Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M.D., Dotsch, V., Andrews, N.C., Caput, D., and McKeon, F. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2, 305-316. https://doi.org/10.1016/S1097-2765(00)80275-0
- Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R.T., Tabin, C., Sharpe, A., Caput, D., Crum, C., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714-718. https://doi.org/10.1038/19539
- Yuan, W., and Krug, R.M. (2001). Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20, 362-371. https://doi.org/10.1093/emboj/20.3.362
- Zhao, C., Beaudenon, S.L., Kelley, M.L., Waddell, M.B., Yuan, W., Schulman, B.A., Huibregtse, J.M., and Krug, R.M. (2004). The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFNalpha/ beta-induced ubiquitin-like protein. Proc. Nat. Acad. Sci. USA 101, 7578-7582. https://doi.org/10.1073/pnas.0402528101
- Zhao, C., Denison, C., Huibregtse, J.M., Gygi, S., and Krug, R.M. (2005). Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Nat. Acad. Sci. USA 102, 10200-10205. https://doi.org/10.1073/pnas.0504754102
- Zhao, C., Sridharan, H., Chen, R., Baker, D.P., Wang, S., and Krug, R.M. (2016). Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins. Nat. Commun. 7, 12754. https://doi.org/10.1038/ncomms12754
- Zou, W., and Zhang, D.E. (2006). The interferon-inducible ubiquitinprotein isopeptide ligase (E3). EFP also functions as an ISG15 E3 ligase. J. Biol. Chem. 281, 3989-3994. https://doi.org/10.1074/jbc.M510787200
Cited by
- Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/2969271
- How USP18 deals with ISG15-modified proteins: structural basis for the specificity of the protease pp.1742464X, 2018, https://doi.org/10.1111/febs.14260
- Innate immune system activation in zebrafish and cellular models of Diamond Blackfan Anemia vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23561-6
- Covalent ISG15 conjugation to CHIP promotes its ubiquitin E3 ligase activity and inhibits lung cancer cell growth in response to type I interferon vol.9, pp.2, 2018, https://doi.org/10.1038/s41419-017-0138-9
- ISG15, a Small Molecule with Huge Implications: Regulation of Mitochondrial Homeostasis vol.10, pp.11, 2018, https://doi.org/10.3390/v10110629
- Interferon-stimulated gene 15 enters posttranslational modifications of p53 pp.00219541, 2018, https://doi.org/10.1002/jcp.27347
- Protein Quality Control in the Endoplasmic Reticulum and Cancer vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103020
- The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon Listeria monocytogenes infection vol.10, pp.1, 2017, https://doi.org/10.1038/s41467-019-13393-x
- ISGylation in Innate Antiviral Immunity and Pathogen Defense Responses: A Review vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.788410
- How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22042078
- Irinotecan (CPT-11) Canonical Anti-Cancer Drug Can also Modulate Antiviral and Pro-Inflammatory Responses of Primary Human Synovial Fibroblasts vol.10, pp.6, 2021, https://doi.org/10.3390/cells10061431